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Abstract—In this paper, an unsupervised machine learn-
ing technique is proposed to localize the Subthalamic Nuc-
leus (STN) during deep brain stimulation (DBS) Surgery.
DBS is one of most common treatments for advanced
Parkinson’s disease (PD). The purpose of this surgery is
to permanently implant stimulation electrodes inside the
STN to deliver electrical currents. It is clinically shown that
DBS surgery can significantly reduce motor symptoms of
PD (such as tremor). However, the outcome of this surgery
is highly dependent on the location of the stimulating
electrode. Since STN is a very small region inside the basal
ganglia, accurate placement of the electrode is a challenging
task for the surgical team. During DBS surgery, the team
uses Micro-Electrode Recording (MER) of electrophysiolo-
gical neural activities to intraoperatively track the location
of electrodes and estimate the borders of the STN. In
this work, we propose a composite unsupervised machine
learning clustering approach that is capable of detecting
the dorsal borders of the STN during DBS operation. For
this, MER signals from 50 PD patients were recorded and
used to validate the performance of the proposed method.
Results show that the approach is capable of detecting the
dorsal border of the STN in an online manner with an
accuracy of 80% without using any supervised training.

I. INTRODUCTION

Parkinson’s disease (PD) is one of the most com-
mon neurodegenerative diseases that is caused by
loss of dopaminergic neurons in the substantia nigra
pars compacta [1]. Movement disorders associated with
PD are characterized by tremor, rigidity, postural in-
stability, bradykinesia, and gait issues [2]. Deep Brain
Stimulation (DBS) surgery is an effective treatment for
advanced PD patients. During DBS surgery, continu-
ous high-frequency electrical current is delivered to
the subthalamic nucleus (STN) of the basal ganglia
in order to manage some motor symptoms [3]. The
surgical outcomes highly depend on the accuracy of
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the placement of the electrode inside the STN. Since
the STN is a very small region (5-7 mm) of the basal
ganglia, accurate placement of the stimulating electrode
is a challenging task for the surgical team [4]. The sub-
optimal positioning of DBS electrodes accounts for 40%
of cases in which inadequate postoperative efficacy of
stimulation is reported [4].

A common technique to target the STN is through the
use of preoperative Magnetic Resonance Imaging (MRI)
[5]. However, the exact location of the STN cannot
always be identified accurately using MRI. As a result,
intraoperative Micro-Electrode Recording (MER) has
been used for localizing the STN. In general, up to five
microelectrodes are inserted through a burr hole in the
skull on each side of the brain. The microelectrodes
record the electrophysiological activities of the neurons
along the insertion trajectory. Typically, MER signals
are observed visually by the surgical team during the
operation. Electrophysiological activities vary along the
insertion trajectory when the electrode passes through
different structures of the brain. This variation is in-
terpreted by the experienced surgical team to localize
the STN. The neurosurgeon then determines the border
of the STN and selects one of the five electrodes for
permanent implantation of the stimulating electrode
[5], [6]. Several important criteria are considered by
the surgical team in order to localize STN, such as
an increase in the background noise level, spike firing
count, and changes in the spike firing patterns. Based
on these criteria, neurosurgeons determine the choice
of microelectrodes for permanent stimulation [7].

The purpose of this paper is to design an autonom-
ous algorithm (trained based on a clinical dataset)
that can assist neurosurgeons in localizing the STN
during DBS surgery. An autonomous STN localization
that can provide feedback to a neurosurgeon during
the procedure can help to reduce the time during the
DBS procedure and can have several clinical benefits.
The technique can also be beneficial for enhancing the
quality of outcomes by reducing possible placement
errors. In this particular study, we show that even
without using the labels (that mark the STN) provided
by a neurosurgeon, the proposed technique is capable
of localizing the STN with an accuracy of 80%. For
this, we designed a composite unsupervised machine
learning algorithm to localize the STN and assist the



neurosurgeon in determining the optimal placement of
electrodes.

The topic of STN localization has been studied in the
literature and several advanced techniques have been
implemented (e.g., [8], [9], [10]). Most of the existing
techniques use supervised classifiers. In this regard, a
state-of-the-art approach was recently reported in [10].
Although high performance has been reported in the
literature, most of the existing techniques cannot be
implemented in the operating room during surgery. The
reason is that the extracted features used in conven-
tional techniques require some offline post-operative
processing steps (such as spike sorting and a specific
normalization algorithm that requires information from
the whole insertion trajectory) [8] [10]. This makes the
existing approaches essentially post-operative valida-
tion techniques which can help to evaluate the quality
of the conducted procedure. However, it does not allow
for STN localization during the operation.

In this study, instead of using the conventional
feature space, we evaluate the performance of Fast
Fourier Transformation (FFT) as the tool to populate
the feature space for our clustering approach. The FFI-
based feature space can be obtained during surgery and
does not need any pre- or post- processing information.

In the second step, we initially evaluate the perform-
ance of two unsupervised learning methods: K-means
clustering and Self Organized Map (SOM) Neural Net-
work, on the dataset that we collected during DBS
surgeries from 50 PD patients. We compared the out-
put clusters generated by the above-mentioned two
clustering algorithms with the labels provided by an
experienced neurosurgeon who has done more that
200 DBS surgeries. The results show that using the
FFT-based features, the unsupervised algorithms are
capable of detecting the signature of STN and localize
it with an accuracy about 75%.

In the third step, a composite approach is evaluated
that includes both K-means and SOM clustering as two
sequential layers of processing. The first layer is a K
means clustering technique which is used to reduce
the size of the feature space through locating the sub-
centers of the input data (FFT-based feature space).
The second layer is an SOM neural network that is
used to separate the two main clusters (STN versus
outside of STN). We have shown that the proposed
composite technique is capable of localizing the STN
with an accuracy of 80%. It also reduces the training
complexity, and therefore the clustering time.

II. METHODS AND MATERIALS
A. Demographic Data

For this study, we collected and used MER signals
from 50 individuals with PD who had previously un-
dergone DBS implantation. The average age was 60 £
6 years ( 34 male and 16 female). On average, each
patient had 10 microelectrodes inserted into their brain.

Details of the data acquisition procedure are provided
in the next subsection.

B. Surgical Procedure and Data Acquisition

All patients discontinued short-acting Parkinson
medications 12-hours prior to surgery. Preoperative
MRI was obtained to done the coordinates of the
anterior commissure (AC), posterior commissure (PC)
and the STN. An axial T2-weighted image and postgad-
olinium (Gd) volumetric axial T1-weighted sequence
was used for the coordinate localization (Signa, 1.5T,
General Electric, Milwaukee, Wis). STN target planning
was carried out using the mid-point between the AC
and PC points and the standard stereotactic coordin-
ates: 12.0 mm lateral, 2.0 mm posterior and 4.0 mm
ventral. The center of the STN was used as the surgical
zero-point. Trajectory planning for the microelectrodes
was done using the post-Gd volumetric T1-weighted
sequence, ensuring avoidance of the ventricles and
blood vessels. All surgical planning was done using the
StealthStation (StealthStation, Medtronic Corp, MN). A
burr-hole was drilled in the skull. The StarDrive (FHC
Inc., Bowdoinham, ME) was mounted to the arc at
30.0 mm above the surgical target and five cannulas
with stylets were lowered to 10.0 mm above the target.
The stylets were then removed from the cannulas and
five 60 ym diameter tungsten microelectrodes were
inserted into the cannulas with an impedance of 0.5-
1.0 mQ) at 1kHz (FHC Inc., Bowdoinham, ME). Signals
were recorded from 10.0 mm above the preoperatively
determined target zero point to well below the ventral
(bottom) border of the STN, generally looking for activ-
ity indicative of the substantia nigra (4.0 - 5.0 mm be-
low the zero-point). The drive was advanced in 1.0 mm
increments and 0.5 mm increments within the target
nucleus. At each depth, advancement was paused to
allow any artifact to be resolved. Once a clean recording
was observed a 10-second recording was collected prior
to advancing the electrodes further. The signals were
sampled (24kHz, 8 bit), amplified (gain: 10,000) and
digitally filtered (bandpass: 500-5000 Hz, notch: 60Hz)
using the Leadpoint recording station (Leadpoint 5,
Medtronic). A sample MER signal from a right-side
anterior trajectory is given in Figure 1. As shown in Fig.
1, some differences in electrophysiological activities can
be seen when comparing signals from the inside and
outside of the STN.

C. Feature Extraction: Fast Fourier Transformation

In this study, we calculated the FFT of the electro-
physiological signals and use the FFT coefficients as
the feature space for the clustering approach. As can
be seen in Figure 2, an increase in the magnitude of
the FFT coefficients can be visually observed when the
electrode is inside the STN. An FFT-based feature space
can provide valuable information about the location
of the microelectrodes since they encode the frequency
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Fig. 1. MER from an anterior electrode trajectory collected during
an STN-DBS case. Negative depth values indicate above the nucleus
and positive values indicate below. The green line indicates the dorsal
border of STN and the red line indicates the ventral border of STN,
as decided by the neurosurgical team.
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Fig. 2. The figure shows power from the Discrete Fourier transform
(DFT) in the frequency of 1000-3000Hz indicating single-unit activity.
The purple shaded area indicates where the nucleus was determ-
ined to be located based on the recordings. Red highlighted depth
indicates which channel the surgeon decided to use. Each dotted line
represents a recording depth. Negative depth values are above the
nucleus and positive values are below.

context of neural activities and the corresponding vari-
ation along the insertion path. The FFT-based feature
space can be populated during the surgery when the
neurosurgeon guides the electrodes toward the target
(i.e., the STN). This means that the feature space can be
calculated during the operation and no post-operative
processing (e.g., spike sorting, normalization along the
path) is needed. This is an advantage of the FFT-based
feature space in comparison to the ones used in the
literature (such as [8], élO])
D. Feature Extraction: Conventional Offline Features

As mentioned earlier, the techniques reported in the
literature mainly rely on a specific offline feature space
designed for the supervised classification of the STN.
In this paper, in order to evaluate the performance of
the proposed online unsupervised technique in com-
parison with those in the existing literature, the same
feature space is also implemented in addition to the
proposed FFT-base feature space. For this purpose, to
populate the offline feature space based on the most

effective ten state-of-the-art features reported in [8],
[10], and [9] are calculated. The offline features are
given in the following: (1) the number of spikes per the
10-second interval; (b) the standard deviation of time
differences between the spikes; (c) the pause index; (d)
the pause ratio; (e) the Root Mean Square (RMS) value
of the signal amplitude; (f) the spiking rate (g) the
teager energy (1) the number of zero crossings; (i) the
curve length; (j) the threshold. The list given above is
for a 10-second time window; detailed definitions can
be found in [8], [10].

It should be noted that the offline feature space
reported in [8], [10], [9] requires a specifically-designed
normalization and standardization process which can
only be done post-operatively. As explained in [10]
the offline features should be normalized considering
the standard deviation of the calculated features in the
entire insertion trajectory. Thus, this requires the MER
data from the entire trajectory, which is not feasible
during online processing of the neural activities. The
above-mentioned process is required due to the possib-
ility of instability in feature calculations [8]. This makes
the existing approaches post-operative validation tech-
niques which can help to evaluate the quality of the
conducted operation. However, it does not allow for
STN localization during the operation.

III. CLASSIFIERS
A. K-means

K-means clustering is used to partition signals into k
clusters. First, it initializes cluster centers randomly or
according to the user’s specifications and then iterat-
ively refining the new cluster centers. If the given data
setis X =xq,..XN,X, € R4, K-means separates k clusters
such that a clustering criterion is optimized.

N M
)=Y Y I(xi € Co)lxi —m[* (1)

i=1k=1

E(mq,my,...,mp

In (1) , mq,my,...,my; are cluster centers and I(X) =1
if X is true and 0 otherwise.

B. Self Organized Map

The SOM is an unsupervised learning neural net-
work method which gives a similarity graph of input
data [11]. The SOM usually has two layers; an input
layer and an output layer which are directly connected
together [12]. The SOM consists of neurons on a low
dimensional grid; usually two dimensional (2-D). The
input of the first la ﬂyer consists of feature vectors x; =
[x;1,x;2,...,x;d] € R®. Each neuron has a dimensional
weight vector wy = [wy1,w,2,...,w,d] € RY. At the be-
ginning of training, w, is initialized randomly from the
input vector domain. The Euclidean distances from x;
and all w;, are computed. The winning neuron or best
match unit (BMU) is the one that has the w, closest to
x; [13]. The SOM has been widely used in dimension



TABLE 1
ACCURACY OF UNSUPERVISED CLUSTERING ALGORITHMS

| Features \ Clustering method | SOM Neural Network | K-means | Composite K-mean-SOM Clustering |

| 10 extracted features | 58.4%

| 618% | 64% \

| FFT coefficients | 74%

| 76.7% | 80% \

Fig. 3. Hit Map units of the Self Organized Map with two neurons
for FFT features. It shows the two clusters from the data. 3868 signals
were labeled as zero and 1815 was labeled as class one.

reduction classification problems. Fig. 3 shows the Hit
Map of the FFT features with two neurons.

C. Composite K-means-SOM

Combinations of K-means and SOM have been com-
monly used to achieve a better performance than using
the individual methods [14]. So in this work, we used
a composite of K-means and SOM as two layers of
processing to increase the clustering accuracy. In the
first step, K-means clustering is applied on the signals
to reduce the dimension of the feature space. Then, in
the second step, the SOM Neural Network is used on
the reduced-order feature space to combine and fuse
the sub-centers, detect the connections, and form the
two main clusters (inside and outside of STN). By using
this combination, we achieved a higher accuracy and
reduced the training complexity and time.

IV. RESULT

In our dataset, we had a ten-second recording from
up to 25 depths. On average, each patient had 10
microelectrodes inserted into their brain. The number
of signals that we used from 50 patients was 5683. In
this study, we have two sets of features (the FFT-based
space and the off-line based spaces) and three unsu-
pervised clustering algorithms (K-means, SOM Neural
Network, Composite K-means-SOM), and two clusters.

To calculate and evaluate the performance of the pro-
posed composite technique in comparison to the other
mentioned approaches [8], [10], we used the labels
provided by the neurosurgeon during the operation.

The results of this comprehensive comparative study
are given in Table 1. As can be seen in the table,
using the FFT-based feature space, the K-mean clus-
tering technique was able to localize the STN with an
accuracy of 76.7%. However, using the offline feature
space results in a significant drop in the accuracy to
a range of 58.4%-61.8%. It should be noted that the
proposed composite technique, using the FFT-based
feature space, represented the highest accuracy (80%)
in comparison to the other approaches. Thus, from the
results shown in Table I, the FFT feature space extracted
from the MER signals provides rich features for the
clustering algorithms and the composite K-means-SOM
is a strong unsupervised tool for clustering the STN.
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