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Abstract 

Subthalamic (STN) deep brain stimulation (DBS) alleviates common appendicular PD 

symptoms, such as: tremor, rigidity and bradykinesia. However, the effect STN-DBS has on 

modulating axial gait features has not been properly quantified objectively. The purpose of 

the present thesis was to investigate the role STN-DBS plays in modulating specific gait 

features such as pace, asymmetry, variability, rhythm and postural control. It is hypothesized 

that axial gait function is regulated predominantly by non-dopaminergic control systems. In 

the acute immediate post-operative phase a surgical effect, named the microlesion effect 

(MLE), is thought to produce a transient improvement of appendicular and axial symptoms. 

It was hypothesized the MLE is a surgical effect, having a non-specific influence on both 

appendicular and axial symptoms. Following surgical recovery and 6 months of clinically 

optimized STN-DBS, it was expected that the true STN-DBS effects would be presented. It 

was hypothesized that STN-DBS plays an important role in the dopaminergic basal ganglia 

circuit and a lesser role in the non-dopaminergic system. 10 individuals with PD who were 

approved for STN-DBS along with 11 healthy age-matched controls were used in the study. 

The participants were asked to walk across a 7 metre long gait analysis carpet at a self-

selected paced walk (SELF) and a fast-as-possible walk (FAST). However, in the current 

study we found no improvement on Unified Parkinson’s Disease Rating scale (UPDRS) 

appendicular scores and axial gait features at baseline, 1 week post-operation and 2 weeks 

post-operation. At 6 months, it was found that UPDRS scores improved for appendicular 

items but remained unchanged in the axial items. Furthermore, axial gait features remained 

unchanged in the SELF and FAST walks. Overall, axial gait function failed to improve from 

the MLE and STN-DBS. While the sample size was small, this finding may suggest an 

influence of regions outside the STN on axial function. Further analysis with more subjects 

should be conducted to verify the current findings.  
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Preface  

Parkinson disease (PD) is a debilitating movement disorder that results in increased 

immobility and decreased quality of life. Individuals suffering from PD are given 

pharmaceuticals that have a therapeutic window of around 10 years (Aquino & Fox, 2015). 

New treatment approaches need to be investigated to treat these PD individuals who no 

longer respond optimally to pharmaceuticals. Deep brain stimulation (DBS) is an accepted 

therapy being implemented for the treatment of PD; however the exact effect it has on gait is 

uncertain. This thesis examines gait impairments, which afflict many Parkinson disease (PD) 

patients. An acute and chronic change in gait induced by DBS was monitored to elucidate the 

effectiveness of this approach as a treatment for PD gait dysfunction.  

Chapter 1 outlines current background literature associated with PD and gait. This chapter 

summarizes the established knowledge on PD gait and defines the basic research tools 

associated with the following chapters, which present the current research.  

Chapters 2 and 3 present the research done as part of the completion of my Master’s thesis 

related to the acute and chronic change in gait parameters following subthalamic deep brain 

stimulation (STN-DBS) for PD.  Chapter 2 explores the acute microlesion effect, which has 

been thought to contribute the efficacy of DBS. Chapter 3 explores chronic DBS efficacy and 

its effect on PD gait. 

Chapter 4 summarizes the research presented in Chapters 2 and 3 and provides a synthesis 

of significance and implications of the research findings.  
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1. Introduction  

1.1 Parkinson disease: symptoms and etiology 

Parkinson disease (PD) is one of the most common neurodegenerative disorders, second 

only to Alzheimer’s disease (de Lau & Breteler., 2006). The prevalence of PD is about 

1% in the population over 60 years of age, with approximately 10% of PD occurring in 

people 50 years or less (de Lau & Breteler, 2006). The primary pathophysiological cause 

of PD causing motor symptomatology, is the neurodegeneration of dopaminergic neurons 

in the substantia nigra pars compacta (SNc) within the Basal Ganglia (BG) (Burke & 

O'Malley., 2013). One of the key features of the PD motor symptoms is that they are 

manifest when there is a 60-80% loss of dopaminergic neurons within the SNc (Burke & 

O’Malley, 2013). The second hallmark pathophysiological sign of PD, although not in 

every case, is the presence of Lewy bodies. Lewy bodies are aggregates of the protein 

alpha-synuclein, which accumulate within surviving dopaminergic neurons. The exact 

mechanistic cascade underlying PD pathophysiology is currently unknown. 

The loss of dopamine producing neurons and the formation of Lewy bodies 

contribute significantly to the onset and progression of PD. However, in the past decade 

the explanation of PD pathophysiology has shifted from altered neuronal discharge rates 

to altered synchronization of activity across populations of neurons. Neuronal oscillations 

stem from the rhythmic and repetitive nature of neural activity within the central nervous 

system.  In a healthy brain, oscillatory pattern changes depending on the activity 

performed and cognitive demand. Lower frequency oscillations, such as theta (4-8hz) and 

alpha (8-13Hz), are associated with sleeping (Marzano et al., 2011). When a healthy, 

aroused and mentally active brain is engaged in activities, there is an increase in β-wave 

forms (13-30 Hz) (Little & Brown., 2014). Several studies have provided evidence that 

abnormal β-wave oscillations within the BG contribute, in part, to the pathophysiology of 

PD (Florin et al., 2013; Weinberger et al., 2006). How the aberrant activity of the 

oscillations leads to the motor deficits in PD remains elusive. 
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A number of common motor features have been determined and used in the 

diagnosis of PD. Some common motor symptoms associated with the onset of PD are 

akinesia, bradykinesia (slow movement), tremor, rigidity, gait impairments and loss of 

automatic movements (Pahwa & Lyons., 2010). PD is complicated further by frequently 

observed comorbid non-motor symptoms, such as depression, cognitive deficits and sleep 

disturbances (Gunn, Naismith, & Lewis., 2010; Lindgren & Dunnett., 2012). The non-

motor symptoms arise from neurodegeneration within other areas including the cortex 

and locus coeruleus (Bonnet, Jutras, Czernecki, Corvol, & Vidailhet., 2012). The 

spectrum of motor and non-motor symptoms varies from person to person, and tends to 

become increasingly disabling as the disease progresses. 

1.1.1 Axial and appendicular symptoms in PD 

Motor features of PD can be divided into two different categories: appendicular and axial. 

Appendicular impairments include all symptoms presenting in the limbs of the body. The 

standard, accepted BG structures such as the striatum, pallidum, thalamus and 

subthalamic nucleus (STN) along with the nigro-striatal pathway are likely responsible 

for the control of appendicular movements (Steiger, Thompson, & Marsden., 1996). 

These symptoms tend to respond well to dopaminergic medication intervention (see 

section 1.1.2). Furthermore, several research groups have reported improvements in 

appendicular symptoms following neurostimulation of the STN (Anderson, Burchiel, 

Hogarth, Favre, & Hammerstad., 2006; Krack et al., 2003).  

Axial motor features tend to dominate the PD symptomatology in more advanced 

disease, contributing to the loss of mobility in PD individuals (Hely, Morris, Reid, & 

Trafficante., 2005). Axial motor features are a complex collection of body biomechanics, 

which involve muscles that support the head, spine, ribs and sternum. Thus, axial muscles 

play an important role in postural stability, gait, and speech impairments. In later stages 

of disease, axial motor features contribute to the majority of PD disability, including 

reduced mobility, loss of independence and increasing falls leading to other injuries. The 

reticulopsinal/vestibulospinal tracts control the axial movements (Steiger et al., 1996). 

Pharmacotherapies play an important role in improving gait in walking tasks in the short-



3 

 

term (Bryant, Rintala, Hou, Lai, & Protas., 2011). However, in the long-term gait 

impairments still proceed and tend to worsen as the disease progresses (Galna, Lord, 

Burn, & Rochester., 2015). This suggests that gait may be influenced by other brain 

regions as well, which do not involve the common dopaminergic pathology (Galna et al., 

2015; Lord, Baker, Nieuwboer, Burn, & Rochester., 2011).  

Axial motor symptoms tend to be dopamine non-responsive and 10-15 years from 

diagnosis, axial symptoms are the dominant feature in most PD patients (Hely et al., 

2005). The onset of appendicular symptoms early in the disease hints at a BG influence, 

while the later onset of axial symptoms hints at further degeneration in other brain 

regions. Various regions play a role in gait function and have been shown to degenerate 

at later time points in PD. These brain areas include the pedunculopontine nucleus (PPN), 

frontal regions and connections from frontal regions to the BG and PPN. It is 

hypothesized, in this thesis, that the axial control systems are predominantly non-

dopaminergic. Therefore it is expected that STN-DBS intervention will do little to 

improve axial gait features, much like the common levodopa therapies.  

1.1.2 Pharmacotherapy for PD 

Various treatment options exist that may be used to alleviate some of the symptoms 

associated with PD. The two general classes of treatment include pharmacological and 

surgical. The former treatment approach is that of oral pharmacotherapies while the latter 

is concerned with surgical alteration of the brain regions associated with PD (Tarazi, 

Sahli, Wolny, & Mousa., 2014). Oral pharmacotherapies always precede surgical 

interventions by many years. The treatment options are titrated over the years and the 

initial oral pharmacotherapy chosen is highly dependent on the demographics of the 

patient: age, disease stage, cognitive abilities and dominant symptoms. Medical 

intervention is always attempted first, and remains the mainstay of treatment for 90 

percent of patients (Tarazi et al., 2014). Surgical therapies are tried in well selected 

patients approximately 8-10% of times (Tarazi et al., 2014).  

Pharmacotherapies are commonly associated with monoamine neurotransmitter 

imbalances, most notably dopamine. Drug therapies seek to correct the imbalances in 
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dopaminergic producing neurons within the BG in PD patients. There are several drug 

classes of dopamine modifying medications that seek to alleviate the motor impairments 

in PD, such as: carbidopa/levodopa (Sinemet) and dopamine agonists (pramipexole and 

ropinirole) (Kalinderi, Fidani, Katsarou, & Bostantjopoulou., 2011; Tarazi et al., 2014). 

While pharmacotherapies are effective in the short-term, side effects manifest later 

including levodopa induced dyskinesias (LIDs) (Aquino & Fox., 2015). Furthermore, 

patients tend to experience increasing motor fluctuations leading to more frequent 

“wearing off” periods at optimized dosages (Poewe & Mahlknecht., 2009). 

Pharmacotherapies are generally prescribed to treat common appendicular motor 

symptoms, including rigidity, tremor and bradykinesia. Indeed these appendicular 

symptoms of the upper and lower limbs do respond to standard dopaminergic 

medications well for many years. However, axial symptoms, such as those affecting 

speech and oral motor control and gait, balance and stability, are not responsive to the 

dopaminergic medications over an extended period (Tarazi et al., 2014). Wright et al. 

(2007) studied the difference in levodopa response to axial and appendicular rigidity in 

12 PD participants. This group found that levodopa was ineffective at improving rigidity 

in the axial systems (trunk, torso) but improved in the appendicular system (knees, arms, 

wrists) (Wright, Gurfinkel, Nutt, Horak, & Cordo., 2007). Axial rigidity is an important 

feature for proper gait function, without treatment this symptom contributes to the 

maintained gait impairment.  

These differences in appendicular versus axial symptoms and their response to 

medications may be related to their underlying pathophysiological basis and different 

control systems. Early on in PD it is thought that the pathophysiology is restricted to the 

dopaminergic systems in the basal ganglia (Connolly & Lang., 2014). As the disease 

progresses other non-dopaminergic systems are affected such as the cerebellum, frontal 

cortex and PPN (Maillet, Pollak, & Debu., 2012). Thus, appendicular symptoms present 

early in the disease followed by non-dopaminergic axial symptoms (Connolly & Lang., 

2014). A recent study of eight PD participants found that gait dysfunction may be 

precipitated by decrease activation in motor and frontal associative areas, basal ganglia, 

thalamus and cerebellum (Maillet et al., 2012). Axial symptoms directly affect mobility 
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and are of great importance to the patients overall quality of life. Hence, the need to 

understand the aspects of axial symptoms and the effects of intervention, especially 

surgical intervention is great. The possibility of replacing the patients’ oral medications 

with a surgical implanted device would provide a much needed improvement in the 

quality of life. Fererra et al. (2010) studied the healthy related quality of life in 21 PD 

participants who underwent STN-DBS surgery and found a significant improvement in 

the energy levels, enjoyment of life, independence from help and controllability of 

movement following 1 year post-operation (Ferrara et al., 2010). It is postulated that the 

quality of life is improved due to the neurostimulation in conjunction with the reduction 

in quantity of medications consumed (Ferrara et al., 2010). 

1.2 Neural Circuitry involved in PD 

The following section reviews the important aspects of the basal ganglia and other 

circuits in PD, relating it to the idea of the differences between axial (gait) and 

appendicular symptoms. This will shed light on why gait effects of interventions are 

unique and why they need to be carefully studied as a way of understanding non-

dopaminergic aspects of motor control. 

1.2.1 Dopaminergic circuitry: appendicular influence 

The appendicular symptoms in PD have been attributed to the reduction in dopaminergic 

activity within the BG. The BG is a group of nuclei found at the base of the 

prosencephalon (forebrain) and is strongly connected to the thalamus and cerebral cortex. 

The organization of the cortico-basal ganglionic circuits is much more complex than the 

summary here (Figure 1-1). However, it is important to have a basic understanding of the 

various structures and the role they play in the pathology of PD. The striatum is the 

primary afferent structure of the BG, receiving glutamatergic input from the cerebral 

cortex. The striatum consists of the nucleus accumbens, caudate nucleus and the putamen 

(Kandel & Schwartz., 2013). The lentiform nucleus consists of the globus pallidus (GP) 

and the putamen. The GP is further divided into the external (GPe) and internal (GPi) 

segments. The substantia nigra (SN) is further broken down into the substantia nigra 

reticulata (SNr) and the SNc, which are both part of the mesencephalon (Kandel & 
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Schwartz., 2013). The GPi and the SNr are the main efferent nuclei of the BG (Squire., 

2013). The STN is a structure, which relays information from the striatum to the output 

nuclei of the BG.  

As previously stated appendicular and axial motor features of PD respond 

differently to treatment interventions, which may stem from the structural organization of 

the central nervous system. The appendicular motor features tend to be controlled by the 

influence of dopamine on the striato-pallidal circuit.  

1.2.2 Dopaminergic effect in the Basal Ganglia 

Striatal projections from the medium spiny neurons are GABAergic and connect to the 

output nuclei (GPi and SNr) in two distinct ways: the “direct” and “indirect” pathways 

(Squire., 2013). The direct pathway involves the striatum sending convergent inhibitory 

projections to the output nuclei. The neurons in the direct pathway contain D1 dopamine 

receptors and co-express the proteins substance-P and dynorphin (Squire., 2013). The 

indirect pathway involves striatal projections to the output nuclei indirectly through the 

GPe and the STN. The neurons in the indirect pathway contain D2 dopamine receptors 

and co-express the protein enkephalin (Squire., 2013). The dopamine effect, modulated 

by the SNc releasing dopamine into the striatum, on these two types of receptors is two-

fold: exciting D1 receptors while inhibiting the D2 receptors (Penney & Young., 1983). 

Therefore, the two circuits have differing effects on the output nuclei. The direct pathway 

tends to inhibit the output nuclei, while the indirect pathway tends to excite the output 

nuclei. These output nuclei send inhibitory projections to motor areas in the thalamus and 

brainstem. As previously stated this depiction of the BG is oversimplified.  Its detailed 

structure and organization is far more complex. For instance, there is a hyper direct 

pathway that projects directly from the cortex to the STN (Brunenberg et al., 2012).  

In the PD brain, dopamine depletion mediates the cardinal symptomatologies 

presented in the onset and duration of the disorder (see Figure 1-1). The lack of dopamine 

input into the BG, a result of the degradation of SNc neurons, leads to the over activity in 

the indirect pathway and a hypoactivity in the direct pathway (Hirsch et al., 2000). This 

causes an excessive inhibition of thalamic and brainstem motor nuclei though the indirect 
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pathway (DeLong., 1990; Hirsch et al., 2000). Dopaminergic treatment is highly effective 

in the treatment of appendicular symptoms of PD such as rigidity, bradykinesia and 

tremor in all limbs. In early PD, axial symptoms are predominantly related to the effects 

of appendicular symptoms on the trunk and lower limbs. Moreover, the appendicular 

symptoms directly result in axial impairments leading to negative locomotor effects on 

gait and posture. When the appendicular symptoms respond to levodopa, the axial 

symptoms will apparently improve for a considerable period. However, primary axial 

dysfunction, which may be unrelated to dopamine, will continue to advance and become 

predominant, and unresponsive as discussed previously/below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Basal ganglia-thalamo-cortical circuit schematic in a normal and parkinsonian state. The 

thickness of the arrows describes the strength of the connection. The + indicates excitation while the – 

indicates inhibition. Loss of SNc neurons leads to increased thalamic inhibition.  
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1.2.3 Non-dopaminergic circuitry: axial influence 

The STN is a unique structure in the BG because it contains mostly excitatory 

glutamatergic neurons, unlike the other BG structures (Kandel & Schwartz., 2013). It is 

postulated that a hyperactivity of the STN pathway plays a role in the onset of PD motor 

symptoms. The STN glutamatergic efferent pathways project to important brain areas 

such as pallidum and the pedunculopontine tegmental nucleus (PPN).  

 The PPN is located in the brainstem, caudal to the SN. The PPN provides the 

majority of cholinergic input to the thalamus, with projections to the striatum, cerebellum 

and brain stem (Yarnall, Rochester, & Burn., 2011).  The PPN is divided into two parts: 

the pars compacta (PPNc) and the pars dissipates (PPNd) (Devos, Defebvre, & Bordet., 

2010). The PPNc contains the majority of the cholinergic neurons within the PPN, while 

the PPNd contains more glutamatergic neurons (Devos et al., 2010). The PPN receives 

projections from all areas of the BG, with the exception of the SNc (Devos et al., 2010). 

The PPN has been shown to play an important role in gait and postural control (Pahapill 

& Lozano., 2000).  

 Bohnen et al. (2009) studied the cholinergic activity of the PPN in 44 PD 

participants with a history of falls (Bohnen et al., 2009). This group found a 12.3% 

reduction in acetylcholine levels compared with controls (Bohnen et al., 2009). It was 

concluded from this study that gait impairments are not caused by the nigrostriatal 

dopaminergic denervation but by cholinergic hypofunction.  

 An increase incidence of cognitive decline has been linked to postural instability 

in PD (Barbas., 2006). The dorsolateral pre-frontal cortex is important for proper 

cognitive performance, decreased activity of this region has been linked to the 

progression of PD (Kikuchi et al., 2001). Furthermore, a recent fMRI study by Prodoehl 

et al. (2013) demonstrated a decrease in pre-frontal cortex activity in individuals who had 

gait dysfunction dominant PD compared with tremor dominant PD (Prodoehl et al., 

2013).  
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 The PPN is highly connected with the BG and the pre-frontal cortex (Nocera et 

al., 2010). A recent review suggests, based on previous literature, that dysfunction of the 

PPN modifies pre-frontal cortex and BG activity leading to increased postural instability 

and gait dysfunction (Yarnall et al., 2011). Thus, the non-dopaminergic circuitry are 

thought to be mostly responsible for the control of gait. Since it is dopamine independent, 

it is predicted that gait will be unresponsive to STN-DBS intervention.  

1.2.4 Dopaminergic effect on axial features 

Evidence for a non-dopaminergic influence on axial features stems from past research 

studying the effect of levodopa on gait parameters. It is understood, as discussed above, 

axial gait function is not a single network but requires the input of multiple systems. 

These various systems have varying response to levodopa treatment. 

 A recent report by Curtze et al. (2015) found gait parameters associated with pace 

improved following administration of levodopa in 104 PD participants (Curtze, Nutt, 

Carlson-Kuhta, Mancini, & Horak., 2015). However, they found that gait parameters 

associated with rhythm and postural control worsened following levodopa treatment 

(Curtze et al., 2015). This group did not directly measure the gait parameters; they 

employed 6 body sensors from which they interrelated the gait characteristics. 

Furthermore, they provided a small subset of gait parameters. Postural control is an 

important feature of gait that is affected in the progression of PD. A recent study by de 

Kam et al. (2014) studied the effects of stepping patterns and postural control in 12 PD 

participants OFF and ON levodopa medication. This group found that these axial features 

were unresponsive to levodopa treatment (de Kam et al., 2014). The inability of axial gait 

function to respond adequately to levodopa means new treatment approaches need to be 

explored.  

1.3 Neurosurgical treatments for PD 

Highly select groups of patients are eligible for neurosurgical intervention, namely deep 

brain stimulation. Bilateral DBS of the subthalamic nucleus (STN-DBS) is performed on 

patients that are levodopa responsive but have persistent motor symptoms despite optimal 
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medical therapy (Okun et al., 2012). The inclusion criteria for DBS surgery includes 1) 

motor complications that are refractory to best medical treatment, 2) are levodopa 

responsive, 3) no mental health issues (dementia, depression), 4) have had PD for greater 

than 7 years (Grimes et al., 2012).  

The idea of stimulating the brain for treatment of motor impairments was first 

explored in 1987 by Alim Benabid. Benabid hypothesized that thalamic stimulation could 

alleviate tremor symptoms in individuals with PD. In 1993 Benabid et al. demonstrated 

that high-frequency stimulation of the STN was effective in a person with advanced PD 

(Benabid et al., 1994). In the post-operation phase, the DBS device is turned on and 

current is increased as the medication is adjusted and reduced to maintain symptom 

benefit. In this post-operative period, literature has shown a maintained benefit of 

appendicular symptoms such as rigidity, bradykinesia and tremor following STN-DBS 

(Benabid et al., 1994; Moro et al., 1999; Weaver et al., 2009). However, there is an 

unclear consensus about the maintained benefit of axial symptoms following STN-DBS.  

While several mechanistic hypotheses for the efficacy of DBS in the treatment of 

PD exist, the true mechanism of effect remains elusive. It is known that the electrical 

current delivered creates a field that can be modified by adjusting the pulse generator 

parameters (voltage, pulse width and frequency). Eusebio et al. (2011) demonstrated that 

high frequency STN-DBS stimulation suppressed the excessive β-frequency 

synchronization in 16 PD participants (Eusebio et al., 2011). Furthermore, it has been 

demonstrated that levodopa has a similar effect to reduction of the synchronous β-

frequency waveforms (Kühn, Tsui, Aziz, Ray, & Brücke., 2009; Kühn, Kupsch, 

Schneider, & Brown., 2006; Weinberger et al., 2006). McNeely et al. (2013) propose that 

STN-DBS and levodopa improve motor function by influencing similar neural pathways 

(McNeely & Earhart., 2013). This group examined 12 PD participants and found similar 

responses on the Unified Parkinson’s disease rating scale (UPDRS), although STN-DBS 

effects were slightly stronger (McNeely & Earhart., 2013). 

It is well established that appendicular symptoms improve following STN-DBS 

intervention such as tremor (Kim et al., 2010), rigidity (Shapiro et al., 2007) and 
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bradykinesia (St. George, Nutt, Burchiel, & Horak., 2010). However, the effect on axial 

gait function is less clear and will be discussed further. A recent meta-analysis 

determined appendicular symptoms remain improved at 5 years post-operation while 

axial function remains worsened (St. George et al., 2010). In order to understand the axial 

gait response to STN-DBS a quantitative assessment needs to be conducted that better 

defines the specific gait features that remain impaired in the post-operation state. 

Appendicular symptoms are divided into various features, axial gait features should be as 

well (see section 1.5.2).  

1.4 DBS and axial symptoms  

To date few studies have examined changes in gait parameters following STN-DBS 

intervention. Most studies have monitored gait post-surgery using clinical rating scales, 

mainly the UPDRS, to assess the responsiveness (see Appendix. D). A number of 

research groups have shown that bilateral STN-DBS maintains axial gait benefits 

following STN-DBS intervention (Cantiniaux et al., 2010; Hausdorff, Gruendlinger, 

Scollins, O’Herron, & Tarsy., 2009; Piper, Abrams, & Marks., 2005). Moreover, several 

groups have found axial gait features do not respond to STN-DBS and continue to worsen 

post-operation (Hariz, Rehncrona, Quinn, Speelman, & Wensing., 2008; Kelly et al., 

2010). 

A recent review by Collomb-Clerc et al. (2015) examined several studies that 

reported on gait parameter changes following STN-DBS intervention for PD. This review 

provided a brief synopsis of the outcome of these studies by providing all the gait 

parameter changes in a single table. The table is complex, making conclusions about the 

pattern of gait parameter changes very difficult. The significant studies exploring gait 

parameter changes will be briefly explored, along with an explanation of their 

weaknesses. It is important to know this is not meant to be an exhaustive list but to 

provide an insight into the current understand of gait and STN-DBS. 
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1.4.1 Studies finding axial improvement 

Ferrarin et al. (2005) assessed gait parameter changes in 10 PD participants following 

STN-DBS surgery. This group was the first to explore gait parameters quantitatively, 

finding improvement in various parameters such as stride length, velocity and stance time 

(Ferrarin et al., 2005). This group did not consider asymmetry or variability of gait 

parameters.  Furthermore, they only assessed at 10 months post-operation and did not 

have pre-operative measures. 

Cantiniaux et al. (2010) showed response of 3 gait parameters to STN-DBS 

intervention (gait velocity, step length and cadence). They found an improvement in 

velocity, stemming from an improvement in step length. They examined 11 patients OFF 

stimulation followed by ON stimulation at an unknown time-point post-operation.  

Hausdorff et al. (2009) measured 13 PD participants in 4 states, in this order: OFF 

medication/ON DBS, OFF medication/OFF DBS, ON medication/OFF DBS and ON 

medication/ON DBS. They found a significant improvement in UPDRS subscores such 

as tremor, rigidity and bradykinesia comparing OFF medication/OFF DBS to ON 

medication/ON DBS. It was also found, in this comparison that gait speed and stride 

length improved. However, the time in which patients were assessed was not adequate 

making carry over effects of stimulation and medication possible. The ideal ON 

medication state is about 1 hour, making these assessment of patients biased.  

Piper et al. (2005) studied 15 PD participants undergoing STN-DBS surgery pre-

operation, 3 months post-operation and 3-4 years post-operation. They assessed patients 

using a motion capture camera system. They found an improvement in gait velocity and 

stride length up to 4 years post-operation. However, they only explored 3 gait parameters 

and did not consider the asymmetry/variability of those gait parameters.  

Altug et al. (2014) demonstrated a significant improvement on several clinical 

rating scales in 19 PD participants 6 months post-operation. This group reported a 

significant decrease in UPDRS subscores for gait and postural stability 6 months post-

operation (Altug, Acar, Acar, & Cavlak., 2012). The specific gait parameter changes 
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were unknown and therefore parameters that are unable to be detected by observation 

may have been affected.  

1.4.2 Studies finding no axial improvement 

Kelly et al. (2010) examined gait function 6 months post STN-DBS surgery in 8 PD 

participants. There was no significant improvement in total UPDRS scores or gait 

subscores following 6 months of stimulation (Kelly et al., 2010). Furthermore, gait speed 

and stride time variability were not significantly changed 6 months post-operation (Kelly 

et al., 2010).  

A recent meta-analysis of the long-term effect of STN-DBS on motor outcome in 

PD determined axial function remains impaired at 5 years post-operation (St. George et 

al., 2010). This group determined the long-term efficacy of STN-DBS on balance and 

gait function are not maintained to the same extent as the appendicular symptoms (St. 

George et al., 2010). However, this meta-analysis considered only studies that used the 

UPDRS to rate motor function. The inter-rater reliability of the UPDRS is a concern, 

especially when comparing across various research sites (Klucken et al., 2013). 

1.4.3 Shortfalls of previous studies 

Several of the above-mentioned studies examined axial function by reporting gait 

subscores of the UPDRS. Stating that gait worsens or improves, as assessed with one 

UPDRS item ranking, is not sufficient when attempting to provide a detailed overview of 

the specifics of axial gait dysfunction. The conflicting results of the mentioned studies 

may stem from the assessment tool being used.  

A few of the studies explored a more in depth analysis of gait function, reporting 

on the change in various gait parameters. However, simply stating the change in gait 

parameters does not elucidate the relationship between the gait parameters. 

Understanding that various gait parameters increase or decrease has little clinical 

relevance/implications. The current thesis explores the change in various gait parameters, 

following STN-DBS intervention, in a more systematic manner. Employing an organized 

system for examining gait parameter changes allows for a better understanding of the 
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relationship between different parameters. The objective is to provide detailed 

information about the parameters and classify them into various features of gait.  

1.5 Gait Dysfunction and Parameters in Parkinson Disease 

1.5.1 Gait dysfunction in PD 

The apparent simplicity of gait, stemming from its automatic and rhythmic nature, 

overshadows the true complexity of the task. As previously discussed, the act of walking 

employs the complex integration of cortical, subcortical, brainstem and spinal cord neural 

networks with external sensory information (Nutt, Marsden, & Thompson., 1993). 

Pathology can affect single or multiple levels of this integration system, producing motor 

impairments. Furthermore, each brain region has differing population of neurons that 

contribute to axial motor symptoms. It is clear that gait impairments arise from several 

brain regions, and is thought to have a significant non-dopaminergic influence (Pahapill 

& Lozano., 2000).  

Gait is defined as the sequence of leg movements for a stride cycle, which tends 

to be impaired in individuals afflicted with PD. A stride cycle is the most common unit 

studied in gait metrics, spanning from the placement of the heel of one foot onto the 

ground to the placement of the same foot in succession. A step length is half a stride 

length, spanning the distance of the heel of one foot to the heel of the other foot in 

succession (explained in more detail in Section 2.2.5). Classically, affected gait in PD 

presents as slowness (reduced limb velocity), reduced arm swing, shorter stride lengths, 

shorter step lengths, stooped posture and increased double support time (Morris, 

Huxham, McGinley, Dodd, & Iansek., 2001; Sofuwa et al., 2005).  

Proper assessment of gait parameters can inform clinicians about early pathology 

(Baltadjieva, Giladi, Gruendlinger, Peretz, & Hausdorff., 2006), predict cognitive decline 

(Verghese et al., 2008) and risk of falls (Verghese, Holtzer, Lipton, & Wang., 2009). To 

date a limited selection of gait parameters are used to assess gait function in PD. 

Furthermore, the average value for the gait parameters are often reported and used to 

illustrate gait changes. However, average values from gait parameters only explain a 
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portion of the dysfunction; variability and asymmetry in gait parameters are also 

important measures. Moreover, stating average values does not address the relationship 

between various gait parameters. An organized assessment profile of various gait 

parameters would better elucidate the specific features of gait that are impaired         

1.5.2 Exploring gait feature models for PD 

Several research groups have addressed the issue of the organization of gait parameter 

changes in elderly and patient populations. There is inconsistency, in current literature, 

on the appropriate selection of gait parameters to be used for analysis and the conclusions 

drawn from changes in these gait parameters. Displaying gait changes without context 

does not provide a good assessment of gait function response to treatment. As previously 

discussed, axial gait features tend to worsen in PD regardless of dopaminergic medication 

intake (Galna et al., 2015). Implementing a detailed assessment profile of gait parameters 

for PD will aid in elucidating axial gait response to STN-DBS.  

Verghese et al. (2008) formulated a predictive model for gait in patients with mild 

cognitive impairment, providing three gait feature categories for various gait parameters: 

pace, rhythmicity and variability (Verghese et al., 2008). Hollman et al. (2011) expanded 

on this model by adding more gait parameters into the three gait feature categories and 

adding two new feature categories: phase and base of support (Hollman, McDade, & 

Petersen., 2011). A recent principle component analysis was conducted which sought to 

expand on these two previous models and apply the model to a PD population. Rochester 

et al. (2013) formulated a concise model with the gait feature categories: pace, rhythm, 

variability, asymmetry and postural control (Lord, Galna, & Rochester., 2013). These 

five features provide an understanding of key gait parameters with respect to their 

purpose and role in pathology. This model has been validated in a PD population and will 

be used for the current research (Galna et al., 2015). 

Pace 

Pace refers to the speed at which a person walks and mainly associated with the 

gait parameters of step velocity and step length. When PD participants are OFF and ON 
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dopaminergic medications, pace remains significantly impaired compared with controls 

(Hass et al., 2012; Morris, Iansek, Matyas, & Summers., 1994). Galna et al. (2015) found 

that following 18 months of levodopa treatment the pace feature continued to decline 

(Galna et al., 2015). 

Rhythm 

Gait rhythmicity is important for safe walking in humans. Rhythmic gait involves 

the temporal aspects of the stride cycle. The timing of each phase of the stride cycle 

determines the rhythmic nature of the walk. In PD rhythmicity tends to become impaired 

giving rise to increased temporal variability, asymmetry and instability in gait (Galna et 

al., 2015). Most of the literature on the neural basis of left-right gait coordination comes 

from animal models. These studies suggest that locomotor rhythmicity activity relies on 

central pattern generators (CPG) within the nervous system (Marder & Calabrese., 1996). 

In animals, the CPGs reside in the cervical and lumbar regions of the spinal cord. These 

generate basic motor output patterns responsible for rhythmic contractions of antagonistic 

flexor-extensor groups of muscles in the limbs of the animal (Yogev, Plotnik, Peretz, 

Giladi, & Hausdorff., 2007). There is some evidence to suggest that limb coordination 

during human locomotion is controlled and organized similar to quadrupeds (Dietz., 

2002). Thus in humans there may be an influence of CPGs in the production of rhythmic 

and symmetric gait.  

Variability 

The measures of gait, like most physiological signals, are not constant but rather 

fluctuate with time and from one step to the next. Variability is the term used to describe 

these step-to-step fluctuations. In healthy subjects the variability in their gait parameters 

remains low (Hausdorff, Cudkowicz, & Firtion., 1998). In PD pathology, gait variability 

tends to increase as the disease progresses (Hausdorff et al., 1998). The increase in 

variability has been attributed to an inherent increase in the variability of muscle force 

production (Stelmach, Teasdale, Phillips, & Worringham., 1989). 
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Asymmetry 

Parkinson disease motor symptoms often begin asymmetrically on one side of the 

body and then progress to involve the other side as the disease advances (Hoehn & Yahr., 

1967). While patients present with symptoms bilaterally, the severity of the symptoms 

may not be symmetrical (Marinus & van Hilten., 2015). The cause of asymmetry is 

unknown and it does not have any known environmental, genetic or neurochemical 

etiology (Djaldetti, Ziv, & Melamed., 2006; Marinus & van Hilten., 2015). However, the 

unequal limb symptoms such as rigidity in one leg versus the other may contribute to the 

asymmetry seen in the gait parameters.  

Postural control 

The base of support for human walking is the area beneath them that includes 

every point of contact the person makes with the supporting surface (see Figure 1-2). 

Postural control is the ability return and keep the center of body mass over the base of 

support (Horak., 1987).  

 

  

 

 

1.6 DBS microlesion effect  

A transient lesion is created during the DBS surgery; it has been named the microlesion 

effect (MLE). This is an acute (short-lasting) lesion, which, on its own, is thought to 

cause a cessation of many of the appendicular and axial PD symptoms. Jech et al. (2012) 

investigated the formation of the MLE using fMRI in twelve individuals undergoing 

STN-DBS surgery. This group found, in addition to neuronal death, the formation of an 

edema within the motor network. The MLE is thought to be a surgical effect, differing 

from the known effects of neurostimulation and levodopa (Jech et al., 2012).  

Figure 1-2. Base of support used for postural control. 
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To date there have been very few studies that have examined the effect of the 

MLE on PD motor symptoms, the ones that have explored the MLE using the UPDRS 

(Granziera et al., 2008; Maltête et al., 2008; Mann et al., 2009). Granziera et al. (2008) 

showed PD symptoms improved for 1 month post-operation and then immediately 

worsened. This group termed this phenomenon as a “delayed failure” of appendicular and 

axial symptoms, assessed using the UPDRS, up to 1 month post-operation. This group 

postulated the symptom improvement from the MLE masks the effect of the STN-DBS. 

Moreover, they found a subset of participants (10%) had delayed failure of symptoms 

meaning the MLE masked improper electrode placement (Granziera et al., 2008). Maltete 

et al. (2008) examined 30 STN-DBS participants and found that improvement in UPDRS 

scores began at 4 days post-operation (Maltête et al., 2008). The former group reported 

the presence of the MLE is troublesome while the latter group reported the MLE to be a 

sign of good electrode placement. However, both these groups examined the MLE effect 

while the STN-DBS stimulator was ON immediately post-operation. The MLE was not 

adequately examined in these studies due to the presence of the STN-DBS stimulation. 

The symptom improvement found in these studies may have been a synergistic effect of 

STN stimulation and the MLE. Furthermore, these studies did not report the specific gait 

parameter changes previously discussed (see section 1.5.2). A detailed analysis of axial 

gait changes in response to the MLE has not been conducted. 

An accurate examination of the MLE would require the DBS stimulator to be 

OFF and dopaminergic medications to remain consistent. Controlling for these variables 

allows for a more sensitive examination of the MLE. Furthermore, assessing the MLE at 

two different time-points, with the stimulator OFF, would provide a more detailed 

progression of the MLE on axial features. In the present thesis it is hypothesized that the 

MLE is a surgical effect, having an effect on both dopamine and non-dopamine systems. 

Thus, it is expected that there will be an immediate post-operation improvement in 

appendicular and axial gait features in the absence of STN-DBS stimulation. 

Demonstration of this in the STN-DBS OFF state will negate the possible influence of 

STN stimulation. 
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1.7 Measuring clinical outcome   

1.7.1 A comparison of gait assessment tools 

Monitoring PD motor symptoms provides invaluable feedback on the effectiveness of 

various therapeutic interventions. Presently, the assessments of appendicular and axial 

PD symptoms are often carried out using standardized clinical scales, such as: the 

UPDRS. The appendicular limb symptoms are better represented on the UPDRS than the 

axial symptoms. As previously discussed, a more detailed investigation of axial gait 

feature defects in PD could be used as a reference for therapeutic efficacy.  

 For motor symptoms in particular, the UPDRS Part III is the most commonly used 

scale to rate such symptoms in PD (Goetz et al., 2008). The UPDRS, maintains an 

intrinsic subjectivity limiting its value as a measure in clinical diagnosis and research 

(Chien et al., 2006). Individual clinician UPDRS ratings can vary, causing low inter-rater 

reliability. More specifically, the UPDRS contains an integer rating scale (0-4) to assess 

severity of motor functions instead of using a more ratio-based quantitative approach 

(Klucken et al., 2013). The UPDRS contains only one item specifically for gait (item 29) 

and a few other items for other axial features (item 18 and 30). Therefore the UPDRS has 

low specificity when examining axial gait features because providing a single integer 

rating for gait does not provide detailed information about aspects of the gait are 

impaired. A recent study by Yogev et al. (2007) found that UPDRS asymmetry was not 

associated with gait asymmetry (Yogev et al., 2007). Moreover, asymmetric motor 

symptoms such as tremor and rigidity do not fully account for the existence of gait 

asymmetry (Yogev et al., 2007).  

Researchers have improved reliability of disease ratings through the increased use 

of objective and quantitative data collection tools over the past few years. The 

advancement of more complex interventions accentuated the need for improved 

assessment measures for many disorders. The question of “man versus machine”, 

increasing the use of technology to counter subjectivity, has become more prevalent in 

current literature looking to assess and quantify patient symptom profiles (Egerton, 

Thingstad, & Helbostad., 2014; Heldman et al., 2011; Mera, Heldman, Espay, Payne, & 
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Giuffrida., 2012; Zampieri et al., 2010). The interest in the current thesis is to extract a 

more detailed profile of the axial gait feature changes following STN-DBS surgery.  

1.7.2 Gait speed changes 

Several research groups have studied the effect of gait speed on the bilateral coordination 

of gait using treadmill machines (Ivanenko, Cappellini, Poppele, & Lacquaniti., 2008; 

Seay, Haddad, van Emmerik, & Hamill., 2006). In these studies, they focused on the 

transition from walking to running and few studies have examined the coordination of 

gait parameters within the walking speed range. Furthermore, the use of treadmills 

instead of over ground walking removes the conscious control over gait speed. The 

current thesis will provide a more realistic environment in which patients will perform 

walking tasks above ground. Gait speed changes will be an important component of the 

research presented in Chapters 2 and 3.  

 The ensuing Chapters will investigate the effects self-dictated normal and fast gait 

have on the coordination of the left-right stepping pattern. The self-selected gait speed 

(SELF) of people with PD has been associated with disability level on the UPDRS (Tan, 

Danoudis, McGinley, & Morris., 2012). The fast as possible (FAST) gait speed has not 

been well documented but plays an important role in measuring one’s ability to adapt gait 

speed to environmental demands. Furthermore, SELF and FAST gait speed has been 

shown to predict community ambulation and risk of falling in individuals with PD 

(Elbers, Van Wegen, Verhoef, & Kwakkel., 2013; Paul et al., 2013). 

1.7.3 Clinical scales  

As previously mentioned there are common non-motor features associated with PD. 

While not in every case, some individuals with PD present with cognitive deficits and 

affective symptoms. Depression, a common affective disorder, has been show to appear 

in a subset of PD cases (Ceravolo et al., 2013; Spalletta et al., 2014). Furthermore, 

depression has been shown to occur before clinical diagnosis of PD was made in a cohort 

of individuals (Schuurman et al., 2002). The onset of depression is thought to occur due 

to the disruption to the dopamine system.  This effect may be further exacerbated by 
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administration on levodopa treatment (Eskow Jaunarajs, Angoa-Perez, Kuhn, & Bishop., 

2011). Cognitive deficits have been shown to occur in PD and tend to worsen as the 

disease progresses (Yarnall et al., 2014). The exact physiological underpinnings of this 

are not clear but there may be a role of the collection of cortical Lewy bodies (Lashley et 

al., 2008) and cholinergic dysfunction (Tiraboschi et al., 2000). PD subjects with 

cognitive deficits have been shown to have a greater incidence of co-morbid depression, 

compared to PD subjects without cognitive impairment (Yarnall et al., 2014). 

 Healthy cognitive functioning plays on important role in proper gait function and 

impaired cognition in PD has been demonstrated to contribute to the presenting gait 

impairments (Maillet et al., 2012). Due to the co-morbidity of cognition and depression in 

PD, both non-motor features will be measured for possible confounds in the current 

research. The Montreal Cognitive Assessment Scale (MoCA) is an accurate measure of 

global cognition (Nasreddine et al., 2005), and has been validated in the PD population 

(Hoops et al., 2009). The Geriatric Depression Rating Scale (GDS) accurately measures 

mild to moderate depression and has been validated in the PD population (Leentjens et 

al., 2008). A recent multicenter study found that STN-DBS does not reduce overall 

cognition and affectivity in PD (Witt et al., 2008).  

1.8 Rationale 

The current thesis investigates the response of axial gait features to STN-DBS 

intervention. The aim was to provide a more detailed and systematic assessment of axial 

gait function than has been studied previously. As previously discussed, studies have 

examined gait function using the UPDRS and various gait parameters. These methods do 

not provide an explanation for the variable response of gait parameters to STN-DBS. The 

current thesis adopts a recent principle component analysis to explore an explanation for 

the changes in gait parameters following STN-DBS.  

 The examination of these gait parameters during a preferred pace and fast-paced 

walking condition has not been previously explored. The former walking condition is less 

cognitively demanding than the latter walking condition. It is thought that the faster 

walking condition is more cognitively and motorically demanding.  



22 

 

 The overall objective is to determine the features that remain unresponsive to 

STN-DBS intervention. This information may be used in two ways 1) provide a better 

treatment for continued gait dysfunction by allowing a more fine-tuned titration of the 

STN-DBS device 2) monitor the addition of another therapeutic treatment to improve the 

unresponsive gait features.    

1.9 Summary 

The role STN-DBS has in modulating PD gait features remains unclear, due in part to the 

use of subjective and qualitative clinical rating scales. A more detailed assessment of gait 

features will elucidate the specific effect STN-DBS has on gait features such as: pace, 

asymmetry, variability, rhythm and postural control. It is hypothesized that axial gait 

function is predominantly regulated by non-dopaminergic systems.  

The second chapter of the current thesis explores a proposed immediate post-

operative symptom improvement, which is thought to be due to the MLE. While previous 

studies examined the MLE with the STN-DBS stimulator turned on, the current study 

will examine the MLE with the stimulator OFF. In the absence of modified dopaminergic 

medication and without the DBS device being turned on it is thought that the true MLE 

will be evaluated. It is hypothesized that the MLE is a surgical effect, having little 

selectivity for the various dopaminergic and non-dopaminergic control systems. The 

immediate post-operative improvement is thought to occur in all symptoms, regardless of 

the dopaminergic and non-dopaminergic systems. It is expected that an improvement will 

be found in both appendicular and axial symptoms. The current thesis will quantify this 

acute surgical effect and its potential role in STN-DBS effectiveness.   

 The third chapter of the current thesis explores the 6 month clinically optimized 

STN-DBS state. Subsequently, following surgical recovery, the DBS device is turned on 

and clinically optimized while the medication is reduced. At the 6 month time point it is 

expected that the real effects of DBS will be seen. It is hypothesized that axial gait 

function is primarily regulated by non-dopaminergic systems. Thus, it is predicted that 

because STN-DBS has a stronger dopaminergic network influence, axial gait function 

will remain impaired following 6 months of STN-DBS. At 6 months post-operation it is 
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expected that the participants will have recovered from the surgical effect and their DBS 

device will be at a clinically optimized setting.  

Overall, it is hypothesized that axial gait features are controlled predominantly by 

non-dopaminergic control systems. Previous work has demonstrated STN-DBS acts 

mainly on the dopaminergic BG system, in turn leaving axial gait features untreated. The 

specific features of gait that are non-responsive to STN-DBS have not been elucidated. In 

the ensuing chapters gait feature changes will be quantified and investigated under 

various walking conditions. It is predicted that the MLE will induce a global 

improvement in appendicular and axial symptoms through a non-specific surgical effect. 

Following surgical recovery, gait features are predicted to worsen due to STN-DBS effect 

in the dopaminergic BG circuit.   

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

1.10 References 

Altug, F., Acar, F., Acar, G., & Cavlak, U. (2012). The effects of brain stimulation of 

subthalamic nucleus surgery on gait and balance performance in Parkinson disease. 

Archives of Medical Science, 10(4), 733-8.  

Anderson, V. C., Burchiel, K. J., Hogarth, P., Favre, J., & Hammerstad, J. P. (2006). 

Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. 

Archives of Neurology, 62(4), 554–60.  

Aquino, C. C., & Fox, S. H. (2015). Clinical spectrum of levodopa-induced 

complications. Movement Disorders, 30(1), 80–89.  

Baltadjieva, R., Giladi, N., Gruendlinger, L., Peretz, C., & Hausdorff, J. M. (2006). 

Marked alterations in the gait timing and rhythmicity of patients with de novo 

Parkinson’s disease. European Journal of Neuroscience, 24(6), 1815–1820.  

Barbas, N. R. (2006). Cognitive, affective, and psychiatric features of Parkinson’s 

disease. Clinics in Geriatric Medicine, 22(4), 773–96.  

Benabid,  A. L., Pollak, P., Gross, C., Hoffmann, D., Benazzouz, A., Gao, D. M., … 

Perret, J. (1994). Acute and long-term effects of subthalamic nucleus stimulation in 

Parkinson’s disease. Stereotactic and Functional Neurosurgery, 62(1-4), 76–84. 

Bohnen, N. I., Müller, M. L. T. M., Koeppe, R. A., Studenski, S. A., Kilbourn, M. A., 

Frey, K. A., & Albin, R. L. (2009). History of falls in Parkinson disease is 

associated with reduced cholinergic activity. Neurology, 73(20), 1670–1676.  

Bonnet, A. M., Jutras, M. F., Czernecki, V., Corvol, J. C., & Vidailhet, M. (2012). 

Nonmotor symptoms in Parkinson’s disease in 2012: Relevant clinical aspects. 

Parkinson’s Disease, 2012, 1–15.  

Brunenberg, E. J. L., Moeskops, P., Backes, W. H., Pollo, C., Cammoun, L., Vilanova, 

A., … Platel, B. (2012). Structural and resting state functional connectivity of the 

subthalamic nucleus: Identification of motor stn parts and the hyperdirect pathway. 

PLoS ONE, 7(6), e39061.  

Bryant, M. S., Rintala, D. H., Hou, J. G., Lai, E. C., & Protas, E. J. (2011). Effects of 

levodopa on forward and backward gait patterns in persons with Parkinson’s 

disease. NeuroRehabilitation, 29(3), 247–252.  

Burke, R. E., & O’Malley, K. (2013). Axon degeneration in Parkinson’s disease. 

Experimental Neurology, 246, 72–83.  

 

 



25 

 

Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., & 

Azulay, J.P. (2010). Comparative analysis of gait and speech in Parkinson’s disease: 

hypokinetic or dysrhythmic disorders? Journal of Neurology, Neurosurgery, and 

Psychiatry, 81(2), 177–184.  

Ceravolo, R., Frosini, D., Poletti, M., Kiferle, L., Pagni, C., Mazzucchi, S., … 

Bonuccelli, U. (2013). Mild affective symptoms in de novo Parkinson’s disease 

patients: relationship with dopaminergic dysfunction. European Journal of 

Neurology, 20(3), 480–485.  

Chien, S. L., Lin, S. Z., Liang, C. C., Soong, Y. S., Lin, S. H., Hsin, Y. L., … Chen, S. Y. 

(2006). The efficacy of quantitative gait analysis by the GAITRite system in 

evaluation of parkinsonian bradykinesia. Parkinsonism and Related Disorders, 

12(7), 438–442.  

Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease: a 

review. JAMA : The Journal of the American Medical Association, 311(16), 1670–

83.  

Curtze, C., Nutt, J. G., Carlson-Kuhta, P., Mancini, M., & Horak, F. B. (2015). Levodopa 

is a double-edged sword for balance and gait in people with Parkinson’s disease. 

Movement Disorders : Official Journal of the Movement Disorder Society, 30(10), 

1361–70.  

de Kam, D., Nonnekes, J., Oude Nijhuis, L. B., Geurts, A. C. H., Bloem, B. R., & 

Weerdesteyn, V. (2014). Dopaminergic medication does not improve stepping 

responses following backward and forward balance perturbations in patients with 

Parkinson’s disease. Journal of Neurology, 261(12), 2330–2337.  

de Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. The 

Lancet Neurology, 5(6), 525–535.  

DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. 

Trends in Neurosciences, 13(7), 281–285.  

Devos, D., Defebvre, L., & Bordet, R. (2010). Dopaminergic and non-dopaminergic 

pharmacological hypotheses for gait disorders in Parkinson’s disease. Fundamental 

& Clinical Pharmacology, 24(4), 407–21.  

Dietz, V. (2002). Do human bipeds use quadrupedal coordination? Trends in 

Neurosciences, 25(9), 462–467.  

Djaldetti, R., Ziv, I., & Melamed, E. (2006). The mystery of motor asymmetry in 

Parkinson’s disease. Lancet Neurology, 5(9), 796–802.  

Egerton, T., Thingstad, P., & Helbostad, J. L. (2014). Comparison of programs for 

determining temporal-spatial gait variables from instrumented walkway data: 

PKmas versus GAITRite. BMC Research Notes, 7(1), 542.  



26 

 

Elbers, R. G., Van Wegen, E. E. H., Verhoef, J., & Kwakkel, G. (2013). Is gait speed a 

valid measure to predict community ambulation in patients with Parkinson’s 

disease? Journal of Rehabilitation Medicine, 45(4), 370–375.  

Eskow Jaunarajs, K. L., Angoa-Perez, M., Kuhn, D. M., & Bishop, C. (2011). Potential 

mechanisms underlying anxiety and depression in Parkinson’s disease: 

Consequences of l-DOPA treatment. Neuroscience & Biobehavioral Reviews, 35(3), 

556–564.  

Eusebio,  A., Thevathasan, W., Doyle Gaynor, L., Pogosyan, A., Bye, E., Foltynie, T., … 

Brown, P. (2011). Deep brain stimulation can suppress pathological synchronisation 

in parkinsonian patients. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 

569–573.  

Ferrara, J., Diamond, A., Hunter, C., Davidson, A., Almaguer, M., & Jankovic, J. (2010). 

Impact of STN-DBS on life and health satisfaction in patients with Parkinson’s 

disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(3), 315–319.  

Ferrarin, M., Rizzone, M., Bergamasco, B., Lanotte, M., Recalcati, M., Pedotti,  A., & 

Lopiano, L. (2005). Effects of bilateral subthalamic stimulation on gait kinematics 

and kinetics in Parkinson’s disease. Experimental Brain Research, 160(4), 517–527.  

Florin, E., Erasmi, R., Reck, C., Maarouf, M., Schnitzler, A., Fink, G. R., & 

Timmermann, L. (2013). Does increased gamma activity in patients suffering from 

Parkinson’s disease counteract the movement inhibiting beta activity? Neuroscience, 

237, 42–50.  

Galna, B., Lord, S., Burn, D. J., & Rochester, L. (2015). Progression of gait dysfunction 

in incident Parkinson’s disease: Impact of medication and phenotype. Movement 

Disorders : Official Journal of the Movement Disorder Society, 30(3), 359–367.  

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, 

P., … LaPelle, N. (2008). Movement Disorder Society sponsored revision of the 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and 

clinimetric testing results. Movement Disorders, 23(15), 2129–2170.  

Granziera, C., Pollo, C., Russmann, H., Staedler, C., Ghika, J., Villemure, J.G., … 

Vingerhoets, F. J. G. (2008). Sub-acute delayed failure of subthalamic DBS in 

Parkinson’s disease: The role of micro-lesion effect. Parkinsonism & Related 

Disorders, 14(2), 109–113.  

Grimes, D., Gordon, J., Snelgrove, B., Lim-Carter, I., Fon, E., Martin, W., … Jog, M. 

(2012). Canadian Guidelines on Parkinson’s Disease. Canadian Journal of  

Neurological Science, 39(Suppl 4), S1–S30. 

Gunn, D. G., Naismith, S. L., & Lewis, S. J. G. (2010). Sleep disturbances in Parkinson 

disease and their potential role in heterogeneity. Journal of Geriatric Psychiatry and 

Neurology, 23(2), 131–137.  



27 

 

Hariz, M. I., Rehncrona, S., Quinn, N. P., Speelman, J. D., & Wensing, C. (2008). 

Multicenter study on deep brain stimulation in Parkinson’s disease: An independent 

assessment of reported adverse events at 4 years. Movement Disorders, 23(3), 416–

421.  

Hass, C. J., Malczak, P., Nocera, J., Stegemöller, E. L., Shukala, A., Malaty, I., … 

McFarland, N. (2012). Quantitative normative gait data in a large cohort of 

ambulatory persons with parkinson’s disease. PLoS ONE, 7(8), e42337.  

Hausdorff, J. M., Cudkowicz, M. E., & Firtion, R. (1998). Gait variability and basal 

ganglia disorders : Stride-to-stride variations of gait cycle timing in Parkinson’s 

disease and Huntington’s disease, 13(3), 428–437. 

Hausdorff, J. M., Gruendlinger, L., Scollins, L., O’Herron, S., & Tarsy, D. (2009). Deep 

brain stimulation effects on gait variability in Parkinson’s disease. Movement 

Disorders : Official Journal of the Movement Disorder Society, 24(11), 1688–1692.  

Heldman, D. A., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Duker, A. P., … 

Espay, A. J. (2011). The modified bradykinesia rating scale for Parkinson’s disease: 

Reliability and comparison with kinematic measures. Movement Disorders, 26(10), 

1859–1863.  

Hely, M. A., Morris, J. G. L., Reid, W. G. J., & Trafficante, R. (2005). Sydney 

Multicenter Study of Parkinson’s disease: Non L-dopa responsive problems 

dominate at 15 years. Movement Disorders, 20(2), 190–199.  

Hirsch, E. C., Périer, C., Orieux, G., François, C., Féger, J., Yelnik, J., … Agid, Y. 

(2000). Metabolic effects of nigrostriatal denervation in basal ganglia. Trends in 

Neurosciences, 23(Suppl 10), S78–S85.  

Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression and mortality. 

Neurology, 17(5), 427–442. 

Hollman, J. H., McDade, E. M., & Petersen, R. C. (2011). Normative spatiotemporal gait 

parameters in older adults. Gait and Posture, 34(1), 111–118.  

Hoops, S., Nazem, S., Siderowf,  A. D., Duda, J. E., Xie, S. X., Stern, M. B., & 

Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI 

and dementia in Parkinson disease. Neurology, 73(21), 1738–1745.  

Horak, F. B. (1987). Clinical measurement of postural control in adults. Physical 

Therapy, 67(12), 1881–1885.  

Ivanenko, Y. P., Cappellini, G., Poppele, R. E., & Lacquaniti, F. (2008). Spatiotemporal 

organization of alpha-motoneuron activity in the human spinal cord during different 

gaits and gait transitions. European Journal of Neuroscience, 27(12), 3351–3368.  

 



28 

 

Jech, R., Mueller, K., Urgosik, D., Sieger, T., Holiga, S., Ruzicka, F., … Ruzicka, E. 

(2012). The subthalamic microlesion story in Parkinson’s disease: Electrode 

insertion-related motor improvement with relative cortico-subcortical hypoactivation 

in fMRI. PLoS ONE, 7(11), e49056.  

Kalinderi, K., Fidani, L., Katsarou, Z., & Bostantjopoulou, S. (2011). Pharmacological 

treatment and the prospect of pharmacogenetics in Parkinson’s disease. 

International Journal of Clinical Practice, 65(12), 1289–1294.  

Kandel, E. R., & Schwartz, J. (2013). Principles of Neural Science Fifth Edition. 

McGraw-Hill Education. 

Kelly, V. E., Israel, S. M., Samii, A., Slimp, J. C., Goodkin, R., & Shumway-Cook, A. 

(2010). Assessing the effects of subthalamic nucleus stimulation on gait and 

mobility in people with Parkinson disease. Disability and Rehabilitation, 32(11), 

929–36.  

Kikuchi,  A., Takeda, A., Kimpara, T., Nakagawa, M., Kawashima, R., Sugiura, M., … 

Itoyama, Y. (2001). Hypoperfusion in the supplementary motor area, dorsolateral 

prefrontal cortex and insular cortex in Parkinson’s disease. Journal of the 

Neurological Sciences, 193(1), 29–36. 

Kim, H.J., Jeon, B. S., Paek, S. H., Lee, J.Y., Kim, H. J., Kim, C. K., & Kim, D. G. 

(2010). Bilateral subthalamic deep brain stimulation in Parkinson disease patients 

with severe tremor. Neurosurgery, 67(3), 626–32.  

Klucken, J., Barth, J., Kugler, P., Schlachetzki, J., Henze, T., Marxreiter, F., … Winkler, 

J. (2013). Unbiased and mobile gait analysis detects motor impairment in 

Parkinson’s disease. PLoS ONE, 8(2), e56956.  

Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., … Pollak, 

P. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in 

advanced Parkinson’s disease. The New England Journal of Medicine, 349(20), 

1925–1934.  

Kühn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in 

subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in 

Parkinson’s disease. European Journal of Neuroscience, 23(7), 1956–1960.  

Kühn, A., Tsui,  A., Aziz, T., Ray, N., & Brücke, C. (2009). Pathological synchronisation 

in the subthalamic nucleus of patients with Parkinson’s disease. Experimental 

Neurology, 215(2), 380–387.  

Larry R. Squire. (2013). Fundamental Neuroscience. Elsevier/Academic Press.  

 

 



29 

 

Lashley, T., Holton, J. L., Gray, E., Kirkham, K., O’Sullivan, S. S., Hilbig, A., … 

Revesz, T. (2008). Cortical alpha-synuclein load is associated with amyloid-beta 

plaque burden in a subset of Parkinson’s disease patients. Acta Neuropathologica, 

115(4), 417–425.  

Leentjens, A. F. G., Dujardin, K., Marsh, L., Martinez-Martin, P., Richard, I. H., 

Starkstein, S. E., … Goetz, C. G. (2008). Anxiety rating scales in Parkinson’s 

disease: Critique and recommendations. Movement Disorders, 23(14), 2015–2025.  

Lindgren, H. S., & Dunnett, S. B. (2012). Cognitive dysfunction and depression in 

Parkinson’s disease: what can be learned from rodent models? The European 

Journal of Neuroscience, 35(12), 1894–1907. 

Little, S., & Brown, P. (2014). The functional role of beta oscillations in Parkinson’s 

disease. Parkinsonism and Related Disorders, 20(Suppl 1), S44–8.  

Lord, S., Baker, K., Nieuwboer, A., Burn, D., & Rochester, L. (2011). Gait variability in 

Parkinson’s disease: an indicator of non-dopaminergic contributors to gait 

dysfunction? Journal of Neurology, 258(4), 566–572.  

Lord, S., Galna, B., & Rochester, L. (2013). Moving forward on gait measurement: 

Toward a more refined approach. Movement Disorders, 28(11), 1534–1543.  

Maillet, A., Pollak, P., & Debu, B. (2012). Imaging gait disorders in parkinsonism: A 

review. Journal of Neurology, Neurosurgery & Psychiatry, 83(10), 986–993.  

Maltête, D., Derrey, S., Chastan, N., Debono, B., Gérardin, E., Fréger, P., … Hannequin, 

D. (2008). Microsubthalamotomy: An immediate predictor of long-term subthalamic 

stimulation efficacy in Parkinson disease. Movement Disorders, 23(7), 1047–1050.  

Mann, J. M., Foote, K. D., Garvan, C. W., Fernandez, H. H., Jacobson, C. E., Rodriguez, 

R. L., … Okun, M. S. (2009). Brain penetration effects of microelectrodes and DBS 

leads in STN or GPi. Journal of Neurology, Neurosurgery & Psychiatry, 80(7), 794–

798.  

Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. 

Physiological Reviews, 76(3), 687–717. 

Marinus, J., & van Hilten, J. J. (2015). The significance of motor (a)symmetry in 

Parkinson’s disease. Movement Disorders : Official Journal of the Movement 

Disorder Society, 30(3), 379–385.  

Marzano, C., Ferrara, M., Mauro, F., Moroni, F., Gorgoni, M., Tempesta, D., … De 

Gennaro, L. (2011). Recalling and forgetting dreams: theta and alpha oscillations 

during sleep predict subsequent dream recall. The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience, 31(18), 6674–6683.  

 



30 

 

McNeely, M. E., & Earhart, G. M. (2013). Medication and subthalamic nucleus deep 

brain stimulation similarly improve balance and complex gait in Parkinson disease. 

Parkinsonism and Related Disorders, 19(1), 86–91.  

Mera, T. O., Heldman, D. A., Espay, A. J., Payne, M., & Giuffrida, J. P. (2012). 

Feasibility of home-based automated Parkinson’s disease motor assessment. Journal 

of Neuroscience Methods, 203(1), 152–156.  

Moro, E., Scerrati, M., Romito, L. M., Roselli, R., Tonali, P., & Albanese,  A. (1999). 

Chronic subthalamic nucleus stimulation reduces medication requirements in 

Parkinson’s disease. Neurology, 53(1), 85–90.  

Morris, M. E., Huxham, F., McGinley, J., Dodd, K., & Iansek, R. (2001). The 

biomechanics and motor control of gait in Parkinson disease. Clinical Biomechanics, 

16(6), 459–470.  

Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1994). Ability to modulate 

walking cadence remains intact in Parkinson’s disease. Journal of Neurology, 

Neurosurgery, and Psychiatry, 57(12), 1532–1534.  

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, 

I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief 

screening tool for mild cognitive impairment. Journal of the American Geriatrics 

Society, 53(4), 695–699.  

Nocera, J. R., Price, C., Fernandez, H. H., Amano, S., Vallabhajosula, S., Okun, M. S., … 

Hass, C. J. (2010). Tests of dorsolateral frontal function correlate with objective 

tests of postural stability in early to moderate stage Parkinson’s disease. 

Parkinsonism and Related Disorders, 16(9), 590–594.  

Nutt, J. G., Marsden, C. D., & Thompson, P. D. (1993). Human walking and higher-level 

gait disorders, particularly in the elderly. Neurology, 43(2), 268–279.  

Okun, M. S., Gallo, B. V., Mandybur, G., Jagid, J., Foote, K. D., Revilla, F. J., … 

Tagliati, M. (2012). Subthalamic deep brain stimulation with a constant-current 

device in Parkinson’s disease: An open-label randomised controlled trial. The 

Lancet Neurology, 11(2), 140–149.  

Pahapill, P., & Lozano,  A. M. (2000). The pedunculopontine nucleus and Parkinson’s 

disease. Brain : A Journal of Neurology, 123 ( Pt 9(Pt 9), 1767–1783.  

Pahwa, R., & Lyons, K. E. (2010). Early diagnosis of Parkinson’s disease: 

Recommendations from diagnostic clinical guidelines. The American Journal of 

Managed Care, 16(Suppl I), S94–S99.  

 

 



31 

 

Paul, S. S., Canning, C. G., Sherrington, C., Lord, S. R., Close, J. C. T., & Fung, V. S. C. 

(2013). Three simple clinical tests to accurately predict falls in people with 

Parkinson’s disease. Movement Disorders : Official Journal of the Movement 

Disorder Society, 28(5), 655–62.  

Penney, J. B., & Young,  A. B. (1983). Speculations on the functional anatomy of basal 

ganglia disorders. Annual Review of Neuroscience, 6(10), 73–94.  

Piper, M., Abrams, G. M., & Marks, W. J. (2005). Deep brain stimulation for the 

treatment of Parkinson’s disease: overview and impact on gait and mobility. 

NeuroRehabilitation, 20(3), 223–232. 

Poewe, W., & Mahlknecht, P. (2009). The clinical progression of Parkinson’s disease. 

Parkinsonism & Related Disorders, 15(Suppl 4), S28–S32.  

Prodoehl, J., Planetta, P. J., Kurani, A. S., Comella, C. L., Corcos, D. M., & Vaillancourt, 

D. E. (2013). Differences in brain activation between tremor and non-tremor 

dominant Parkinson disease. JAMA Neurology, 70(1), 100–6.  

Schuurman,  A. G., van den Akker, M., Ensinck, K. T. J. L., Metsemakers, J. F. M., 

Knottnerus, J. A, Leentjens,  A. F. G., & Buntinx, F. (2002). Increased risk of 

Parkinson’s disease after depression: A retrospective cohort study. Neurology, 

58(10), 1501–1504. 

Seay, J. F., Haddad, J. M., van Emmerik, R. E. a, & Hamill, J. (2006). Coordination 

variability around the walk to run transition during human locomotion. Motor 

Control, 10(2), 178–196. 

Shapiro, M. B., Vaillancourt, D. E., Sturman, M. M., Metman, L. V., Bakay, R. A. E., & 

Corcos, D. M. (2007). Effects of STN DBS on rigidity in Parkinson’s disease. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 15(1), 173–181.  

Sofuwa, O., Nieuwboer, A., Desloovere, K., Willems, A.M., Chavret, F., & Jonkers, I. 

(2005). Quantitative gait analysis in Parkinson’s disease: comparison with a healthy 

control group. Archives of Physical Medicine and Rehabilitation, 86(5), 1007–13.  

Spalletta, G., Robinson, R. G., Cravello, L., Pontieri, F. E., Pierantozzi, M., Stefani, A., 

… Assogna, F. (2014). The early course of affective and cognitive symptoms in de 

novo patients with Parkinson’s disease. Journal of Neurology, 261(6), 1126–1132.  

St. George, R. J., Nutt, J. G., Burchiel, K. J., & Horak, F. B. (2010). A meta-regression of 

the long-term effects of deep brain stimulation on balance and gait in PD. 

Neurology, 75(14), 1292–1299.  

Steiger, M. J., Thompson, P. D., & Marsden, C. D. (1996). Disordered axial movement in 

Parkinson’s disease. J.Neurol.Neurosurg.Psychiatry, 61(6), 645–648.  

 



32 

 

Stelmach, G. E., Teasdale, N., Phillips, J., & Worringham, C. J. (1989). Force production 

characteristics in Parkinson’s disease. Experimental Brain Research, 76(1), 165–

172.  

Tan, D., Danoudis, M., McGinley, J., & Morris, M. E. (2012). Relationships between 

motor aspects of gait impairments and activity limitations in people with 

Parkinson’s disease: A systematic review. Parkinsonism & Related Disorders, 

18(2), 117–24.  

Tarazi, F. I., Sahli, Z. T., Wolny, M., & Mousa, S. A. (2014). Emerging therapies for 

Parkinson’s disease: From bench to bedside. Pharmacology & Therapeutics, 144(2), 

123–133.  

Tiraboschi, P., Hansen, L. A., Alford, M., Sabbagh, M. N., Schoos, B., Masliah, E., … 

Corey-Bloom, J. (2000). Cholinergic dysfunction in diseases with Lewy bodies. 

Neurology, 54(2), 407–407.  

Verghese, J., Holtzer, R., Lipton, R. B., & Wang, C. (2009). Quantitative gait markers 

and incident fall risk in older adults. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 64A(8), 896–901.  

Verghese, J., Robbins, M., Holtzer, R., Zimmerman, M., Wang, C., Xue, X., & Lipton, R. 

B. (2008). Gait dysfunction in mild cognitive impairment syndromes. Journal of the 

American Geriatrics Society, 56(7), 1244–1251.  

Weaver, F. M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W. J., … Huang, G. D. 

(2009). Bilateral deep brain stimulation vs best medical therapy for patients with 

advanced Parkinson disease: a randomized controlled trial. JAMA : The Journal of 

the American Medical Association, 301(1), 63–73.  

Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie, M., … 

Dostrovsky, J. O. (2006). Beta oscillatory activity in the subthalamic nucleus and its 

relation to dopaminergic response in Parkinson’s disease. Journal of 

Neurophysiology, 96(6), 3248–3256.  

Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M. O., … Deuschl, G. 

(2008). Neuropsychological and psychiatric changes after deep brain stimulation for 

Parkinson’s disease: a randomised, multicentre study. The Lancet Neurology, 7(7), 

605–614.  

Wright, W. G., Gurfinkel, V. S., Nutt, J., Horak, F. B., & Cordo, P. J. (2007). Axial 

hypertonicity in Parkinson’s disease: Direct measurements of trunk and hip torque. 

Experimental Neurology, 208(1), 38–46.  

Yarnall, A. J., Breen, D. P., Duncan, G. W., Khoo, T. K., Coleman, S. Y., Firbank, M. J., 

… Burn, D. J. (2014). Characterizing mild cognitive impairment in incident 

Parkinson disease : The ICICLE-PD Study. Neurology, 82(4), 308–316.  



33 

 

Yarnall, A., Rochester, L., & Burn, D. J. (2011). The interplay of cholinergic function, 

attention, and falls in Parkinson’s disease. Movement Disorders, 26(14), 2496–2503.  

Yogev, G., Plotnik, M., Peretz, C., Giladi, N., & Hausdorff, J. M. (2007). Gait asymmetry 

in patients with Parkinson’s disease and elderly fallers: When does the bilateral 

coordination of gait require attention? Experimental Brain Research, 177(3), 336–

346.  

Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., & Horak, F. B. 

(2010). The instrumented timed up and go test: potential outcome measure for 

disease modifying therapies in Parkinson’s disease. Journal of Neurology, 

Neurosurgery, and Psychiatry, 81(2), 171–176.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

2. Parkinson disease motor symptom response to the 

microlesion effect immediately post-operation. 

2.1 Introduction 

Parkinson disease (PD) is a neurodegenerative disorder that presents with appendicular 

(limb) and axial motor deficits such as rigidity, resting tremor, akinesia, bradykinesia and 

gait impairments. As PD progresses the severity of symptomatology increases and the 

response to pharmaceutical treatments decreases. Bilateral STN-DBS with multipolar 

electrodes and a subcutaneous pacemaker has become standard practice for advanced PD 

(Deuschl et al., 2006). STN-DBS targets PD symptoms that have been previously 

responsive to the levodopa treatment. The mechanism by which STN-DBS intervention 

impacts PD symptoms remains elusive (Miocinovic, Somayajula, Chitnis, & Vitek, 

2013). Recent literature points to a possible contribution from the immediate post-

operative microlesion effect (MLE) in the prediction of the long term effectiveness of 

STN-DBS (Maltête et al., 2008; Tykocki, Nauman, Koziara, & Mandat., 2013). While the 

effect of the MLE is thought to be surgical (global improvement), the improvement in 

appendicular symptoms suggests proper implantation within the STN. In this respect, 

studying the MLE is becoming increasingly important. 

   Interestingly, after DBS lead implantation and before the device is turned on for 

stimulation, many individuals present with improved symptoms. This improvement, 

thought to be a result of the MLE, produces a transient cessation of PD symptoms lasting 

a few weeks following surgery (Granziera et al., 2008; Kondziolka, & Lee., 2004; Mann 

et al., 2009). Several studies have reported the MLE occurring in various DBS targeted 

brain regions following electrode placement, such as: GPi (Mann et al., 2009), ventral 

intermediate nucleus of the thalamus (Morishita et al., 2010) and STN (Maltête et al., 

2008). Following the routine surgical implantation of the electrode leads, brain tissue 

damage occurs resulting in a hemorrhage, edema and disruption of cells (Morishita et al., 

2010). The MLE has been shown to cause clinical improvement immediately following 

surgery, with a range of improvements (Granziera et al., 2008). Tykocki et al. (2013) 

found that PD participants experience a greater MLE than others depending on disease 
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duration (Tykocki et al., 2013).Moreover, it was found that individuals with a shorter PD 

duration may experience a greater MLE than individuals with a longer PD duration 

(Tykocki et al., 2013). Current literature has demonstrated improvement from the MLE 

using the UPDRS for measure outcome (Derrey et al., 2010; Morishita et al., 2010; 

Tykocki et al., 2013). While this data has proven useful, a quantitative approach may 

reveal specific axial gait improvements which are poorly assessed with the UPDRS.  

 The current chapter examines differences in axial gait parameters up to 2 weeks 

post-operation. As previously established in Chapter 1, appendicular symptoms may have 

a different control mechanism that is regulated by and disrupted due to dopamine 

dysregulation while axial symptoms tend to arise, at least in part, from more non-

dopaminergic systems. Axial features have been shown to be less responsive to 

dopaminergic medications (Hely, Morris, Reid, & Trafficante, 2005). The MLE has been 

shown to improve both appendicular and axial symptoms immediately following STN-

DBS surgery in individuals with PD (Maltête et al., 2008; Tykocki et al., 2013). The 

improvement in PD symptoms, without much change in dopaminergic medication 

immediately post-operation, is thought to have surgical shock like response to the system. 

This shock is global and not specific for the dopaminergic or non-dopaminergic 

pathways. In the MLE state, the individual has the same medication dosing as 

preoperative and yet experiences an improvement of appendicular and axial symptoms. It 

is not clear how long these effects last, only that they tend to diminish a few weeks post-

operation (Maltête et al., 2008; Mann et al., 2009; Tykocki et al., 2013). Thus it is 

hypothesized that there will be an acute improvement in axial gait parameters 

immediately post-operation due to the MLE. This study is the first to explore quantitative 

data elucidating the influence of MLE on axial gait features.   
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2.2 Methods 

2.2.1 Study Participants 

Ten PD participants undergoing bilateral STN-DBS were included in this analysis (Table 

2-4.). Inclusion criteria for the PD participants included: 1) diagnosis of PD with 

debilitating symptoms (tremor, stiffness) for whom medications have begun to lose 

effectiveness 2) severe motor fluctuations with disabling off periods and dyskinesia 

during on phases 3) physiological eligibility for the DBS procedure. Exclusion criteria for 

the PD participants included: 1) lack of English proficiency 2) dementia or psychiatric 

abnormalities. Furthermore, PD participants were required to be on a steady state of their 

medications, with no change in the past year as assessed from chart reviews. This study 

was approved by the Human Subjects Research Ethics Board (HSREB) (Western 

University Ethics (WUE) # 103928), and all participants provided informed consent. 

2.2.2 STN-DBS Surgical Procedure 

The DBS surgical procedure differs slightly between centers but follows similar steps 

previously reviewed (Benabid, Chabardes, Mitrofanis, & Pollak., 2009). A pre-operative 

MRI scan was completed to determine the best location for target stimulation. Further 

pre-operative planning was conducted, including choosing the best entry site, path, and 

approach to avoid blood vessels. Once the plan was established, a stereotactic head frame 

was placed on the patient to allow proper placement of the electrodes. 

Electrophysiological exploration was carried out by using microelectrodes and various 

tracks. Some centers conduct the exploration one track at a time, others investigate 

multiple tracks at once. The microelectrodes recorded the activity of the neurons as it was 

lowered down toward the target STN. The neural activity was projected through a set of 

speakers, which allowed the neurosurgical team to listen for the typical firing pattern of 

the STN. The STN has asymmetrical spiking pattern at a high frequency with bursting 

patterns (Benabid et al., 2009). There were also proprioceptive responses to passive 

movements made by the neurosurgeon.  
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Once the microelectrodes were implanted, a full symptoms review was completed 

by stimulation of each microelectrode independently. This review established the location 

of each microelectrode in relation to the STN. It is important to determine where each 

microelectrode is placed: e.g. within the STN, around the STN border and outside the 

STN (Benabid et al., 2009). Tremor and rigidity are the two most common symptoms 

used to assess which microelectrode produces the best symptom relief (Benabid et al., 

2009). The track that produced the most beneficial effects and fewest side effects was 

determined. All microelectrodes were removed and a chronic lead (DBS 3389, 1.5 mm 

contact length, 0.5 spacing, 1.27 mm diameter) was permanently implanted into the 

selected track. The pulse generator was implanted subcutaneously into the subclavicular 

area. 

The pulse generator was turned on at 2 weeks post-operation and it was optimally 

programmed for symptomatic relief as well as avoidance of undesirable side-effects, such 

as dysarthria, blurred vision or pain. There are several programmable components on the 

device that determine how the electrical impulses are delivered to the brain. These 

include stimulation frequency, pulse width, and pulse voltage. A high frequency (130Hz) 

STN-DBS stimulation and a narrow pulse width (60-90 µs) has been shown to be 

beneficial in alleviation of both appendicular and axial motor symptoms in PD (Eusebio 

et al., 2011; Sidiropoulos et al., 2013). Initial programming uses a frequency of 130 Hz 

and a pulse width of 90 µs. The pulse generator was set to have a positive polarity while 

both electrode leads had contact points that were set to a negative polarity. Each contact 

point (numbered zero for the distal contact and three for the proximal contact) was 

investigated independently. The voltage was increased from zero to a maximum of 5 

volts, while looking for symptom relief as well as unwanted side effects: eye deviation, 

dysarthria, dyskinesia and muscular contraction (usually the face). Having the contact 

point negative and the pulse generator as positive is termed monopolar and is usually the 

first selection used. However, if the lead is sub-optimally placed a review of bipolar 

setting (one contact point is positive while another is negative) may be investigated.  

The current produced by the lead creates an electrical field, which causes 

stimulation of the STN and possibly surrounding areas. Monopolar settings tend to 
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produce a larger electrical field and bipolar settings produce a narrower electrical field 

(Kuncel & Grill., 2004). The best setting is typically: monopolar, 2-2.5 volts, 130 Hz and 

90 µs (Benabid et al., 2009; Kuncel & Grill., 2004). Initially the voltage was set to 1.5 

volts and was gradually increased over a few months post-operation to a clinically 

optimized level. Titration of levodopa was also conducted post-operation; lowering oral 

dosages to levels that do not induce dyskinesia but avoid apathy and other related 

withdrawal symptoms.  

2.2.3 Clinical Scales Assessment 

STN-DBS participants underwent neuropsychological testing before the surgery. During 

the research appointments STN-DBS participants completed several standardized clinical 

scales (see Table 2-1.). The scales given to the STN-DBS participants were: the Montreal 

Cognitive Assessment (MoCA) scale, activities-specific balance confidence (ABC) scale, 

the geriatric depression scale (GDS), the UPDRS and the freezing of gait questionnaire 

(FOG-Q) (see appendix D-H). The MoCA test was used to assess levels of cognitive 

impairment and has been validated in the PD population (Hoops et al., 2009; Nasreddine 

et al., 2005). The MoCA test has a total score of 30 and a score below 25 is considered 

cognitively impaired (Nasreddine et al., 2005). The ABC scale is a 16 item self-report 

questionnaire that rates balance confidence on various tasks and has been validated in a 

PD population with excellent test-retest reliability (Bello-Haas, Klassen, Sheppard, & 

Metcalfe., 2011). The GDS scale is a 30 item self-report questionnaire used to assess 

levels of depression in an elderly population and has been validated in a PD population 

with high test-retest reliability (Ertan, Ertan, Kiziltan, & Uyguçgil., 2005). The FOG-Q is 

a 6 item scale used to assess freezing of gait and has been validated in a PD population 

(Giladi et al., 2009). 

All STN-DBS participants were assessed by the UPDRS-III in the ON state at the 

beginning of each visit. For the purpose of the current study, scores derived from the 

UPDRS-III were used to assess appendicular and axial symptoms. The appendicular 

items were rigidity (sum of item 22) and akinesia (sum of items 23-26). Rigidity was 

further divided into upper limb (neck and arms) and lower limb (legs). Akinesia was also 
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divided into upper limb (sum of item 23-25) and lower limb (sum of item 26). Axial 

items were gait (sum of item 29-30), speech (item18) and body bradykinesia (item 31).  

Table 2-1. The clinical rating scales used during each visit to the research facility. 

Clinical Questionnaires 

Unified Parkinson Disease Rating Scale (UPDRS) 

Activities-specific Balance Confidence Scale (ABC) 

Freezing of Gait Questionnaire (FOG-Q) 

Montreal Cognitive Assessment (MoCA) 

Geriatric Depression Scale (GDS) 

2.2.4 Quantitative Gait Assessments  

Various gait assessment tools exist to quantify axial gait parameters but an efficient and 

effective system is the Zeno walkway (Zenometrics LLC, Peekskill, NY) with 

ProtoKinetics Movement Analysis Software (PKMAS) analysis system software 

(PKMAS, Harvertown, PA, version 8.1). The Zeno walkway is a portable 7 metre long 

carpet with embedded pressure sensors. The sensors detect each footfall made by the 

participant while walking and relay the information to a computer for analysis. The 

PKMAS software system captures each footfall on the Zeno walkway and provides 

accurate measurement of various gait parameters (Bilney, Morris, & Webster., 2003; 

Menz, Latt, Tiedemann, Kwan, & Lord., 2004). The validity and reliability of the 

PKMAS system has been shown in many studies to date (Chien et al., 2006; 

McDonough, Batavia, Chen, Kwon, & Ziai., 2001; Nelson et al., 2002; van Uden & 

Besser., 2004). The PKMAS analysis system allows the patient’s gait performance to be 

quantified in an efficient manner, allowing post-hoc analysis to be conducted (Egerton, 

Thingstad, & Helbostad, 2014). The ability to extract gait parameters during a patients 

walk in real-time has advanced the way in which treatment regimens are assessed.  

Obtaining these gait parameters can elucidate the identification of disease (Egerton, 

Williams, & Iansek., 2012; Lord, Galna, Coleman, Burn, & Rochester., 2013), the 

prediction of falls (Verghese, Holtzer, Lipton, & Wang, 2009) and contribute to defining 

gait patterns in the progression of PD (Hass et al., 2012). With respect to the present 

work the PKMAS system provides insight into the effectiveness of STN-DBS 

intervention for PD gait patterns.   
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Gait was assessed while participants conducted a walking task at preferred pace 

(SELF) and fast as possible (FAST) gait speeds. For the SELF task participants were 

asked to walk at their preferred pace. For the FAST task participants were asked to walk 

at their fast-as-possible gait speed. Each walking condition was performed twice. 

Participants began seated in a chair at one end of the 7 meter long walkway, 2 meters 

from the start of the walkway. There was an X on the floor 2 meters past the end of the 

walkway where the participant was informed to walk to. Once they walked across the 

walkway and reached the X they had to turn around to return to the chair. Ample space 

was provided on either end of the carpet to avoid recording acceleration/deceleration of 

the walks. 

2.2.5 Axial gait parameters  

Seven spatiotemporal gait parameters were extracted using the PKMAS system these 

include: step velocity, step length, single support time, double support time, step time, 

stance time and stride width. The average values of each parameter, over the walking 

trial, were used along with the variability and asymmetry of these parameters. The 

measure for variability was obtained by calculating the mean of the standard deviation 

between the left and right steps. The measure for asymmetry was obtained by calculating 

the absolute difference between the left and right steps. These calculated gait parameters 

are divided into five general gait features: pace, variability, rhythm, asymmetry and 

postural control (see Table 2-2.). These features, and their respective gait parameters, 

have been established and validated previously in a PD population (Galna, Lord, & 

Rochester., 2013; Lord, Galna, Verghese, et al., 2013). For the purpose of the study these 

parameters will be used to fully quantify axial gait changes. 
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Step Velocity 

Velocity of the step was measured by calculating the distance travelled in a period of 

time. As PD progresses the step velocity tends to decrease. Step velocity is the largest 

contributing factor to failure in obstacle avoidance in PD (e.g. avoiding raised curbs or 

crossing a busy street) (Hass et al., 2012). 

Step Length 

The length of the step was measured by finding the distance between the heel of one foot 

to the heel of the successive opposite foot (see Figure 2-1.). Step length is related to stride 

length in that there are two step lengths in one stride length. Stride length is measured by 

finding the distance between the heel of one foot to the heel of the same foot in a gait 

cycle (see Figure 2-1.). Step length tends to be shorter in the PD population during gait 

initiation and during the SELF gait speed task with an asymmetrical presentation over 

time (Bovonsunthonchai, Vachalathiti, Pisarnpong, Khobhun, & Hiengkaew., 2014). A 

reduction in stride length may be due to an asymmetry, which can be detected by 

examining the step length. 

Single support time 

Single support time is the phase in the gait cycle where the body is supported by one 

limb. This is the length of time one foot is raised up off the ground lifted upward and 

forwards during a stride. In the PD population single support time tends to remain 

Figure 2-1. Spatiotemporal gait parameters used to assess quality of walking. 
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consistent as the disease progresses (Hass et al., 2012; Hollman, McDade, & Petersen, 

2011). 

Double support time 

Double support time is the length of time in the gait cycle where the body is supported by 

both limbs. This is the phase where both feet are planted on the ground and a stride length 

has just been completed. This parameter is speed dependent, as walking speed increase 

double support time tends to decrease. It is this phase that individuals with PD use to 

compensate for increased instability (Cole, Silburn, Wood, Worringham, & Kerr., 2010). 

If an individual with PD feels less stable they tend to compensate by increasing the time 

spent in the double support phase, instead of the single support phase. In this way the 

double support time tends to be increased in a PD population when compared to healthy 

age-matched controls (Hass et al., 2012; Hollman et al., 2011).  

Step Time 

Step time is the amount of time required to complete a step length. Compared to healthy 

subjects, individuals with PD tend to have an increase in step time (Bovonsunthonchai et 

al., 2014). 

Stance Time 

The stance time of the walking cycle is the amount of time the body is supported by 

single or double feet. The phase in which one foot or both feet contact the floor.  

Stride Width 

The width of the stride is the distance between the midline of one footfall and the midline 

of the successive footfall (see Figure 2-1.). PD stride width tends to remain similar to 

healthy age matched (Bovonsunthonchai et al., 2014; Okada, Fukumoto, Takatori, 

Nagino, & Hiraoka., 2011).  
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Table 2-2. Description of the gait parameters and their respective gait feature categories. 

Gait Feature/Parameter Description of parameters 

Pace  

Step Velocity Measure of distance travelled in period of time. 

Step Length  Distance between heel strike of one foot to the heel strike of the successive foot 

Variability  

Step Time SD  Step-to-step variability in the time required to complete a step length. 

Step Length SD  Step-to-step variability in the length of each step. 

Step Vel. SD  Step-to-step variability of distance travelled in period of time. 

Rhythm  

Step Time  Total time required to complete a step length. 

Stance Time  Total time when both limbs are on the ground. 

SST  The phase in the step cycle where the body is supported by one limb. 

Asymmetry  

Step Time Asymm  Step-to-step asymmetry in the time required to make complete a step length 

Stance Time Asymm  Step-to-step asymmetry in the time both limbs are on the ground 

SST Asymm  Step-to-step asymmetry in the time spent support by one limb. 

DST Asymm  Step-to-step asymmetry in the time spent support by both limbs. 

Postural Control  

Step Length Asymm  Step-to-step asymmetry in the length of each step. 

Step Width  The distance between the midline of one footfall and the midline of the 

successive footfall. 

DST  The phase in the step cycle where the body is supported by both limbs. 

Step Width SD  Step-to-step variability in the width of each step. 
SST, single support time; DST, double support time; the gait features and associated gait parameters were extracted from previous 

literature (Lord, Galna, & Rochester., 2013). 

 

2.2.6 Experimental Timeline 

Gait data was extracted from 3 of the 9 visits (V0-V2) the PD participants made to the 

research facility (see Table 2-3.). The STN-DBS participants came to the research facility 

pre-operation, 1 week post-operation, 2 weeks post-operation and then once a month for 

6 months. However, to assess the MLE only V0, V1 and V2 were used. Following the 

assessment at two weeks post-operation, the DBS device was turned on. The walking 

tasks in the current study did not provide a possibility for a learning effect due to the 

nature of the task itself. Participants were requested to walk at their SELF and FAST 

pace, a task they perform on a daily basis. Walking is an inherently learned task, and a 

learning effect was not expected. Furthermore, gait assessments and the PKMAS system 

have proven test re-test reliability in multiple studies to date (Meldrum, Shouldice, 

Conroy, Jones, & Forward., 2014; Steffen & Seney., 2008; Stolze, Kuhtz-Buschbeck, 

Mondwurf, Jöhnk, & Friege., 1998).   
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Table 2-3. Summary of each visit to the research facility. 

Visit#  Weeks Post-op  Task 

V0  Pre-op  Motor kinematic measurements + Clinical rating scales 

V1  1 (Post)  Motor kinematic measurements + Clinical rating scales 

V2  2  Motor kinematic measurements + Clinical rating scales + Device Turn 
On 

V3  4  Motor kinematic measurements + Clinical rating scales  

V4  8  Motor kinematic measurements + Clinical rating scales  

V5  12  Motor kinematic measurements + Clinical rating scales  

V6  16  Motor kinematic measurements + Clinical rating scales  

V7  20  Motor kinematic measurements + Clinical rating scales  

V8  24  Motor kinematic measurements + Clinical rating scales  

2.2.7 Data Analysis 

Demographic and clinical characteristics were summarized using means and standard 

deviations. Between-group demographic comparisons were made with independent-

samples t-tests. Descriptive statistics were calculated for the spatiotemporal gait 

parameters based on the raw scores exported from the PKMAS software system. Gait 

parameters were expressed as (a) mean spatiotemporal characteristics, (b) step-to-step 

variability (calculated by combining the average of left and right standard deviations) and 

(c) asymmetry (calculated by finding the absolute difference between left and right steps 

on each parameter). No extreme outliers were found in the data, assessed using boxplots. 

All data met Shaprio-Wilks test for normality and a repeated measures ANOVA was used 

to compare baseline values to 1 and 2 weeks post-operation. Statistical significance was 

set at p < .05 (two-sided). Post-hoc comparisons were performed using a Bonferonni 

correction. All statistics were conducted using SPSS (v21.0, IBM Corporation, Chicago, 

IL). 
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2.3 Results 

2.3.1 Study Participants: clinical outcomes 

Ten PD participants undergoing bilateral STN-DBS (Age: 63.9 yrs (±5.65yrs), Females: 

4 (40%), PD duration: 10.6 yrs (±3.30 yrs)) were included in the analysis. Demographic 

and clinical characteristics are presented in Table 2-4. There was no significant change in 

medication intake immediately post-operation. The overall UPDRS score was not 

significantly different comparing pre-operation to 1 and 2 weeks post-operation. UPDRS 

subscores showed that akinesia in the upper body was significantly improved 2 weeks 

post-operation (see Table 2-4.). 

Table 2-4. STN-DBS participant demographics. UPDRS items were divided into appendicular and axial 

ratings. Data are displayed for STN-DBS participants at pre-operation, 1 week and 2 weeks post-operation. 

 STN-DBS participants 

 

Baseline (n=10) 

1 week post-

operation (n=10) 

P1 

Value 

2 weeks post-

operation (n=10) 

P2 

Value 

Age (yrs) 63.91 (±5.65) --- --- --- --- 

Females, n (%) 4 (40%) --- --- --- --- 

PD Duration (yrs) 10.61 (±3.30) --- --- --- --- 

LED (mg/day) 1417.88 (±452.26) 1055.38 (±240.57) .105 1005.00 (±311.59) .199 

UPDRS ON score 22.10 (14.08) 15.55 (10.41) .071 15.35 (9.55) .285 

Appendicular Subscores      

Tremor (item 20-21) 3.50 (3.13) 2.25 (1.78) .287 3.20 (2.74) 1.00 

Rigidity (item 22) 4.95 (3.81) 3.85 (2.98) .386 3.70 (1.26) .772 

Upper Limb 3.05 (2.03) 2.2 (1.42) .248 2.35 (2.12) .499 

Lower Limb 1.90 (2.07) 1.65 (2.00) 1.00 1.35 (1.16) 1.00 

Bradykinesia (item 23-26) 8.05 (5.49) 6.45 (5.56) .198 4.8 (5.67) .085 

Upper Limb 5.5 (4.08) 4.55 (4.66) .381 3.15 (4.10) .043 
Lower Limb 2.55 (1.96) 1.9 (1.33) .810 1.65 (2.00) .855 

Axial Subscores      

Speech (item 18) 0.90 (1.26) 0.45 (0.83) .512 0.30 (0.48) .400 

Gait (item 29-30) 1.80 (1.39) 1.4 (0.81) .630 1.35 (1.11) 1.00 

Body bradykinesia (item 31) 0.60 (1.07) 0.2 (0.42) .669 0.15 (0.34) .704 
SD, standard deviation; LED, levodopa equivalency dose; UPDRS, Unified Parkinson’s Disease Rating Scale; Calculation for LED 

was based on a standardized formula from literature by Tomlinson et al. (2010) (Tomlinson et al., 2010); p1 represents the difference 

in the STN-DBS group from baseline to 1 week post-operation using a repeated measures ANOVA; p2 represents the difference in the 

STN-DBS group from baseline to 2 weeks post-operation using a repeated measures ANOVA; Post-hoc comparisons were conducted 

using bonferonni corrections; Significance was set to p = < .05;means are displayed with standard deviation in brackets.  

Interestingly, the STN-DBS participants performed significantly worse on the 

MoCA test 1 week (p =.006) and 2 (p =.007) weeks post-operation (see Table 2-5.). As to 

be expected with the MLE, the ABC and FOG-Q scores were significantly improved at 1 

week post-operation (p =.006 and p =.041 respectively) but returned to pre-operation 

levels at 2 weeks post-operation.  
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Table 2-5. Scores from the clinical rating scales and questionnaires. Scores are displayed for STN-DBS 

participants at the pre-operative, 1 week and 2 weeks post-operation.  

 STN-DBS Participants 

Clinical 

Scales Baseline (n=10) 1 week post-operation (n=10) 

P1 

value 

2 weeks post-

operation (n=10) 

P2 

value 

MoCA 26.70 (2.41) 23.10 (3.54) .006 22.55 (4.28) .007 

GDS 9.50 (7.57) 9.1 (8.76) 1.00 8.60 (8.23) 1.00 

ABC 63.25 (14.40) 79.25 (15.32) .006 72.34 (20.63) .308 

FOG-Q 12.00 (6.11) 6.8 (5.84) .041 10.40 (8.59) 1.00 

p1 represents the difference in the STN-DBS group from baseline to 1 week post-operation using a repeated measures ANOVA; p2 

represents the difference in the STN-DBS group from baseline to 2 weeks post-operation using a repeated measures ANOVA; Post-

hoc comparisons were conducted using bonferonni corrections; Significance was set to p = < .05; means are shown with standard 

deviation in brackets. 

2.3.2 Gait parameter changes during the normal walk (SELF) 

Assessment of axial gait performance, during the SELF walking task, showed no 

significant improvement in any of the spatiotemporal gait parameters at 1 week and 2 

weeks post-operation (see Figure 2-2. and Figure 2-3.). While these results were not 

significant, there were some general trends that were observed in the data set. Overall a 

few parameters trended toward improvement at 1 week post-operation. These parameters 

were associated with the gait features: pace, variability and postural control. These 

features trended toward improvement 1 week post-operation but worsened again 2 weeks 

post-operation (see Figure 2-2. and Figure 2-3.).  

 

 

 

 

 

 

 



47 

 

0

50

100

150

Step Velocity

cm
/s

ec
 

Visit 

Baseline

1 week

2 weeks
0

20

40

60

80

Step Length
C

en
ti

m
et

er
s 

(c
m

) 

Visit 

0
20
40
60
80

100
120
140
160
180
200

Step Time SD

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

0

0.5

1

1.5

2

2.5

3

Step Length SD

C
en

ti
m

et
er

s 
(c

m
) 

Visit 

0

0.5

1

1.5

2

2.5

3

3.5

Step Vel. SD

cm
/s

e
c 

Visit 

Baseline

1 week

2 weeks

0

100

200

300

400

500

600

700

800

Step Time Stance Time Single Support

Time

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

Baseline

1 week

2 weeks

Figure 2-2. Gait features pace, variability, rhythm and the respective gait parameter outcomes at 

pre-operation, 1 week and 2 weeks post-operation on the SELF gait task. The difference between pre-

operation, 1 week post-operation and 2 weeks post-operation in the STN-DBS group was assessed using 

repeated measures ANOVA. All post-hoc comparisons were conducted using bonferroni corrections. The 

mean values are displayed in the bar graph with standard deviation as the error bars. 
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Figure 2-3. Gait features asymmetry, postural control and the respective gait parameter outcomes at 

pre-operation, 1 week and 2 weeks post-operation on the SELF gait task. The difference between pre-

operation, 1 week post-operation and 2 weeks post-operation in the STN-DBS group was assessed using 

repeated measures ANOVA. All post-hoc comparisons were conducted using bonferroni corrections. The 

mean values are displayed in the bar graph with standard deviation as the error bars. 
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2.3.3 Difference in gait parameters in the fast walk (FAST) 

When STN-DBS participants were asked to walk at their FAST gait speed it was found 

that a few gait parameters significantly worsened post-operation (see Figure 2-4. and 

Figure 2-5.). At 1 week post-operation stance time (p = .021) and double support time (p 

= .021) significantly worsened from pre-operation scores (p = .021). At 2 weeks post-

operation double support time was no longer significantly worse from pre-operation. 

However, stance time remained significantly worse from pre-operation scores (p = .002). 

Furthermore, step velocity variability improved (p = .016) while step time worsened (p = 

.023) at 2 weeks post-operation. There were some general trends noticed in the data set. 

There was a trend toward worsening in the pace, asymmetry postural control at 1 week 

and 2 weeks post-operation. However, variability trended toward improvement 1 week 

and 2 weeks post-operation.  

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

0

10

20

30

40

50

60

70

80

Step Length

C
en

ti
m

et
er

s 
(c

m
) 

Visit 

Baseline

1 week

2 weeks
0

20
40
60
80

100
120
140
160
180

Step Velocity
C

m
/S

ec
 

Visit 

0

20

40

60

80

100

120

140

160

180

Step Time SD

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

0

0.5

1

1.5

2

2.5

3

Step Length SD

C
en

ti
m

et
er

 (
cm

) 

Visit 

0

0.5

1

1.5

2

2.5

3

3.5
4

4.5

Step Vel. SD

C
m

/S
ec

 

Visit 

Baseline

1 week

2 weeks

Pace Feature  

 

 

 

 

 

Variability Feature  

 

 

 

 

 

Rhythm Feature 

 

 

 

 

 

 

 

 

 

0
100
200
300
400
500
600
700
800

Step Time Stance Time Single Support

Time

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

Baseline

1 week

2 weeks

p = .016** 

p = .002** 

Figure 2-4. Gait features pace, variability, rhythm and the respective gait parameter outcomes at 

pre-operation, 1 week and 2 weeks post-operation on the FAST gait task. The difference between pre-

operation, 1 week post-operation and 2 weeks post-operation in the STN-DBS group was assessed using 

repeated measures ANOVA. All post-hoc comparisons were conducted using bonferroni corrections. 

Corrections were made for multiple comparisons by dividing the p-value by the number of parameters in 

each feature: ** indicates p< .016. Only bold p-values are significant following corrections. The mean 

values are displayed in the bar graph with standard deviation as the error bars. 
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Figure 2-5. Gait features asymmetry, postural control and the respective gait parameter outcomes at pre-

operation, 1 week and 2 weeks post-operation on the FAST gait task. The difference between pre-

operation, 1 week post-operation and 2 weeks post-operation in the STN-DBS group was assessed using 

repeated measures ANOVA. All post-hoc comparisons were conducted using bonferroni corrections. The 

mean values are displayed in the bar graph with standard deviation as the error bars. 
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2.4 Discussion 

In the present study, the aim was to determine change in gait features due to the MLE. It 

was hypothesized that the MLE would cause an overall improvement in appendicular and 

axial symptoms. This improvement would stem from an acute system level post-surgical 

effect as has been seen in other studies. As such the improvements that have been 

suggested previously would occur in both control systems, namely appendicular and 

axial. This improvement would be seen while the medication doses would not be 

significantly modified during this acute period as per clinical protocol. Such 

improvement would then be termed the “microlesion effect”. However, in this research, 

no MLE was demonstrated on either the appendicular or the axial gait scores immediately 

following STN-DBS operation. Gait performance was unchanged on the SELF gait task 

and worsened on the FAST gait task. Furthermore, improvement on appendicular 

measures was not found. As previously stated the study may have been under powered 

with only 10 PD participants. 

In the next few sections the current finding that appendicular and axial gait 

features fail to improve immediately post-operation will be discussed. Previous literature 

has suggested that the MLE promotes transient improvement in appendicular and axial 

PD symptoms immediately post-operation. This contradiction will be discussed and 

explanations of the findings will be explored. The effect on the UPDRS will be first, 

followed by the PKMAS results.  

2.4.1 UPDRS: appendicular and axial symptoms 

The current study found no significant improvement in appendicular symptoms with the 

exception of upper body akinesia as assessed by the UPDRS. This finding contradicts 

previous studies that found improvement on the UPDRS scores immediately post-

operation in both appendicular and axial domains (Derrey et al., 2010; Jech et al., 2012). 

Jech et al. (2012) found a significant reduction 4 days post-operation in rigidity, akinesia 

and axial scores (Jech et al., 2012). Maltete et al. (2008) reported a 27% improvement in 

rigidity, tremor and bradykinesia 7 days post-operation (Maltête et al., 2008).  
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 The MLE occurs in every individual undergoing STN-DBS surgery but there is a 

gradient in the extent of the MLE and the subsequent symptom improvement 

experienced. Early neurostimulation research has shown that the MLE improvements 

varying among the population. A study by Tasker (1998) demonstrated that 53% of the 

PD participants in the study (n=19) experienced improvement from the MLE 

immediately following DBS electrode implantation (Tasker., 1998). It has also been 

demonstrated by Benabid et al. (1996) that 20.5% of their PD participants experienced 

improvement from the MLE (n=117) following DBS electrode implantation (Benabid et 

al., 1996). However this implies that 80% of the population did not see a MLE. Dividing 

STN-DBS participants into separate groups, based on the presence or absence of 

improvement from the MLE, has been previously conducted by several groups using 

UPDRS motor scores (Pourfar et al., 2009; Tykocki et al., 2013). Such regression 

analysis could be carried out with our data if the sample size were larger. It may then be 

possible to show that subgroup of patients show an improvement and thus a MLE 

immediately post-operatively. 

An important variable in post-surgical effect is the location of the electrode. 

Microelectrode recordings are carried out during the operation which allows the surgeon 

and the physiologist to determine the target that they are implanting. However the 

physiological data is not analysed in terms of the localization of the electrode within the 

STN. This placement is quite varied in each patient and may produce a MLE in different 

parts of the STN. Although the data is preliminary, somatotopic organization of the input-

output of the STN has been known to exist. Therefore, it is possible that the MLE also 

varies substantially between patients based upon the location of the stimulation electrode.  

Secondary effects of the surgery such as hemorrhage, edema and mechanical 

disruption of pathways is also likely to be anatomically different among patients. 

Unfortunately, magnetic resonance imaging (MRI) is not possible after implantation to 

delineate these effects. Therefore, one can conjecture that the MLE can be highly variable 

and therefore should not be counted upon as being consistent across patients.  
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No improvements in appendicular or axial domains were found from the UPDRS 

assessment 1 week and 2 weeks post-operation. The UPDRS is subjective and qualitative 

in nature having only a few items related to axial gait symptoms (Klucken et al., 2013). 

Thus, axial symptoms were further assessed in different walking tasks using a 

quantitative and objective approach.  

2.4.2 Gait tasks: axial symptoms 

It should be mentioned from the outset that no other study to date has explored axial gait 

parameter changes in response to the MLE at two visits immediately post-operation. The 

current study found that the performance of STN-DBS participants on the SELF gait 

speed task, immediately post-operation, remained unchanged from pre-operation 

measures. Furthermore, performance on the FAST gait speed task worsened immediately 

post-operation. There are several explanations as to why the axial gait features did not 

change in the SELF gait speed task and worsened in the FAST gait task. 

Quantitative monitoring of axial gait parameters has not been conducted in the 

literature but a general analysis of gait function has been reported on. Jech et al. (2012) 

studied the MLE and found an improvement on axial domains of the UPDRS 4 days 

following STN-DBS surgery (Jech et al., 2012). In contrast, Granzoera et al. (2008) 

found that an axial gait failure, assessed with the UPDRS, occurred 1 month post-

operation (Granziera et al., 2008). The present study examined STN-DBS participants 1 

week and 2 weeks post-operation. The two assessments may have been conducted at a 

point where the MLE had peaked and was diminishing. However, if this were accurate, 

the axial gait parameters would have declined in the self and fast gait tasks equally. 

However, the fact that the fast walk was somewhat more affected could imply that the 

mechanisms for control of self-paced and fast walk are different. As seen in chapter 3 

with long term effects of DBS, the self-paced versus fast walk effects are significantly 

different. 

Another explanation for non-axial improvement could be due to electrode 

placement within the STN. Physiological mapping of the movement-related neurons 

within the STN has been localized to the dorsal two-thirds of the STN. The specific 
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organization of the STN is complex and its physiology was not a studied in the current 

study. However, the somatotopic organization of the STN implies precise electrode 

placement is important for proper response to STN-DBS. Granziera et al. (2008) found 

STN-DBS participants who developed gait difficulties immediately after surgery had 

improper electrode placement (Granziera et al., 2008). Furthermore, the MLE may spread 

to surrounding STN regions, impairing function. The lenticular fasciculus is a tract which 

houses peduncolopallidal fibers that connects the GPi with the PPN (Devos, Defebvre, & 

Bordet, 2010). The PPN is important in the initiation and modulation of gait (Pahapill & 

Lozano., 2000). It has been postulated that the MLE occurring within the STN causes a 

reduction in STN hyperactivity, contributed to improvement in appendicular symptoms. 

However, if the MLE spreads or occurs outside the STN it may interfere with other brain 

regions. Spread to the peduncolopallidal fiber tract may interfere with PPN activity, 

resulting in abnormal gait performance.  

The sustained rigidity and lower limb akinesia may have contributed to the worse 

performance in the FAST gait task (Chien et al., 2006). The combination of reduced LED 

values and the unchanged appendicular symptoms immediately post-operation may have 

prevented the STN-DBS participants from walking at a FAST gait speed.  

2.4.3 Decline in global cognition: link to gait dysfunction  

Interestingly, immediately post-operation, global cognition significantly decreased as 

assessed by the MoCA test. This finding agrees with previous work showing cognitive 

decline up to 6 months post-operation (Kim et al., 2013). Kim et al. (2013) conjecture 

that the decline up to 6 months post-operation is due to reduction of levodopa equivalent 

dose (LED) (Kim et al., 2013). The current study found a cognitive decline occurring 1 

week post-operation. At this time-point (V1) the LED values were 25% reduced from 

pre-operation levels (V0) and may contribute to the decline in cognition. Cools et al. 

(2002) showed that L-dopa ameliorates high-level cognitive deficits in individuals with 

PD by increasing blood flow to the pre-frontal cortex (Cools, Stefanova, Barker, Robbins, 

& Owen, 2002). A reduction in LED, although not significant, may explain the rapid 

decline in cognition immediately post-operation.  
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 The decline in global cognition may also stem from the implantation of the 

electrodes. The trajectory of the electrode during surgery may be associated with decline 

in global cognition. Witt et al. (2013) found if the electrode passed through the caudate 

nucleus the individual experienced greater decline in global cognition (Witt et al., 2013). 

The caudate nucleus is part of the cortical-sub-cortical loop system involved in aspects of 

executive functioning and working memory performance (Marklund et al., 2009). The 

decline seen in the current study may be related to the trajectory of the electrodes which 

form the MLE. However, this is only theoretical as the trajectory of the electrodes was 

not measured in the current study.  

 Walking is considered a normal automatic task in younger individuals but the 

cognitive component of gait becomes more important with ageing. It is known that 

cognition and physical function decline is common in older individuals. Atrophy of the 

temporal lobe and prefrontal areas has been linked to gait and mobility deficits (Rosano, 

Aizenstein, Studenski, & Newman., 2007). Furthermore, global cognition and gait 

difficulty have been linked to atrophy of the corpus callosum (Ryberg et al., 2007). While 

atrophy of various brain regions is not a surgical side effect, it is important to understand 

that global cognition and motor function are linked. This study has shown that post-

operatively, global cognition declined immediately following surgery and this may have 

played a role in the poor performance on the fast walking task.  

2.4.4 Other clinical scales  

The significant improvement on the FOG-Q and ABC scale may stem from a surgery-

related placebo-effect as described by several groups (Granziera et al., 2008; Rodriguez-

Oroz., 2005). A recent report by de la Fuente-Fernandez (2004) suggested the 

improvement immediately post-operation may be due to a placebo effect in which 

participants assume they will get better immediately following the surgery (de la Fuente-

Fernández., 2004). This placebo effect has been reported to having a magnitude of around 

40% (de la Fuente-Fernández., 2004). It is interesting that the subjective rating scales 

showed improvement, while the objective measures showed no improvement. 

Furthermore, in order to control for a potential placebo-effect, all study participants in the 
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study were pre-informed that the stimulation would remain OFF until two weeks post-

operation. Under these conditions, the influence of the placebo effect should be 

minimized substantially during the evaluation of the MLE. If correct assessment of the 

true placebo effect were to be conducted, a sham DBS operation would be required. This 

type of operation would not be approved for ethical reasons. 

Notwithstanding the above mentioned placebo-effect, the improvement on the 

clinical scales may suggest that the objective kinematic technology does not provide all 

the information required for clinical improvement. This finding suggests having a 

subjective input from the participant, in conjunction with the objective kinematic 

technology, may be more beneficial than relying on the technology alone.  

2.4.5 Limitations 

The current study has several limitations that should be addressed. The most significant 

limitation is that with few subjects, there might not have been power to detect true 

differences that might have occurred. The current study was unable to replicate findings 

that generally arise owing to MLE on appendicular symptoms, which could be due to 

insufficient power. Furthermore, recruiting more participants into the study would allow 

the division of participants into MLE gradient groups. It is known that the MLE may be 

greater in some individuals while less extensive in others. Tykocki et al. (2012) used the 

distribution of the MLE results to determine cut off points to separate each participant 

into low, medium and high response to the MLE (Tykocki et al., 2013). Thus, the non-

significant results in this study may stem from the grouping of participants. Separating 

STN-DBS participants into gradients of MLE would allow for a more detailed review.  

Another limitation is the lack of imaging to obtain the placement of the electrodes 

within the STN. Obtaining proper localization of the DBS lead within the STN would 

help to further elucidate the mechanism of the MLE. Subsequently, imaging the MLE 

would allow a better understanding of the mechanism. However, as discussed above, it is 

currently not possible to obtain proper MRI scans on implanted patients due to safety 

reasons. 
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The baseline used in the current study may have imposed a limitation as well. The 

baseline was conducted within 2 weeks before the surgery. However, an inclusion 

criterion for DBS surgery is an increase in negative side effects of PD medications. PD 

participants may therefore be on lower medication dosages and thus the baseline may not 

be their best optimized medication state.  

Medication induced dyskinesias may hinder the gait results during the ON state 

assessments. Moreover, at the baseline visit patients are asked to come into the research 

laboratory about 1 hour after taking their medications - clinically defined as their “ON” 

state. However, patients undergoing DBS surgery tend to experience LIDs and the onset 

of dyskinesias may hinder the gait data. The dyskinesia is a result of medication and not 

the disease. The reduction in medication from baseline to 1 week post-operation may 

have impeded the effects expected from the MLE. There was a 25% reduction in 

medication from V0 to V1, which may have masked the MLE effects and contributed to 

the non-significant findings. Future studies should keep medication consistent when 

examining the MLE.  

Corrections for multiple comparisons were conducted to attempt to correct for 

multiple comparisons. Corrections were made by dividing the p-value by the number of 

gait parameters within each gait feature.  However, a stringent correction may support a 

Type II error (giving a “false negative” result). These corrections were done to decrease 

the risk of a type 1 error, despite this research having exploratory components.  

2.4.6 Strengths/Implications 

The current study was the first to quantitatively and objectively examine the response of 

axial gait features to the MLE. This method of analysis allows for a much more detailed 

review of the specific gait features and parameters that may respond to the MLE. 

Furthermore, the current study examined participants at two different time-points 

following surgery. This allowed a better examination of the pattern of the MLE. Previous 

studies chose only one time point for the MLE analysis, which does not provide enough 

detail to assess the MLE. Furthermore, past studies examined the MLE while the DBS 
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device was turned on. This may have caused a false positive result in the previous 

research.  

Proper assessment of the MLE may allow it to be used as a predictive factor for 

STN-DBS efficacy. Several studies have suggested using the MLE to predict outcome 

from STN-DBS (Maltête et al., 2008; Tykocki et al., 2013). However, the current 

findings do not support this notion as no significant result was found.  

2.5 Conclusion 

In summary, there was no improvement in appendicular or axial gait parameters in 

response to the MLE. The current study had few participants and a true effect may not 

have been found due to the underpowered study. On the walking tasks the STN-DBS 

participants were able to maintain performance at a preferred pace but performed 

significantly worse at a fast pace immediately after surgery. The poorer performance on 

the FAST gait speed task may be due to the reduction in global cognition and maintained 

bradykinesia. This study is the first to demonstrate that the MLE may not produce an 

improvement in appendicular or axial symptoms. The MLE must occur in every surgery 

due to the insertion of a foreign object into brain tissue, causing edema. However, the 

MLE is an ephemeral phenomenon and may not play a role in improving axial features 

post-operation. Any improvement found may be due to a post-operative placebo effect. 

The current research approach should be applied to a larger population to explore the 

MLE with greater power.  
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3.  Long-term STN-DBS and the response of axial gait 

features.  

3.1 Introduction 

Gait difficulties are reported to be one of the most common and severe symptoms 

experienced by individuals with PD (Hammarlund, Andersson, Andersson, Nilsson, & 

Hagell., 2014; Kelly et al., 2010). As the pathology progresses gait impairments worsen 

and lead to increased risk of falling, reduced independence, and are directly related to a 

decline in the individuals’ quality of life (Forsaa, Larsen, Wentzel-Larsen, Herlofson, & 

Alves., 2008). Gait in PD is characterized by impairments in several axial gait parameters 

such as shorter step lengths, shorter stride lengths, lowered walking speed and the 

tendency toward a longer duration in double-support time when compared with controls 

(Morris et al., 1994; Sofuwa et al., 2005). Furthermore, it is well established that PD is a 

unilateral disorder, which contributes directly to increased variability and asymmetry in 

PD gait patterns (Marinus & van Hilten., 2015).  

Despite the development of many pharmaceutical treatments for PD, levodopa 

remains the most effective medication. However, prolonged use of levodopa results in 

motor fluctuations and levodopa induced dyskinesias (LIDs) which reduce the quality of 

life in PD. Furthermore, gait dysfunction seems to be unresponsive to these medications 

and worsens as the disease progresses. As an alternative, high frequency DBS of the STN 

is a current intervention being implemented in individuals with PD who are no longer 

seeing benefits from their current pharmacotherapy. STN-DBS has proven to be effective 

at alleviating various appendicular PD symptoms such as tremor, bradykinesia, 

dyskinesia and rigidity. Following STN-DBS most patients require significantly less 

pharmaceuticals and thus significantly reduced motor fluctuations, contributing to an 

increase in the quality of life. 
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Current literature provides conflicting reports on the response of gait to STN-

DBS. While some research groups have provided data documenting an improvement in 

gait with long term STN-DBS (Krack et al., 2003; Piboolnurak et al., 2007; Zibetti et al., 

2011), others have shown a continued worsening of gait (Janssen et al., 2014; Kelly et al., 

2010). This conflicting data on gait may stem from differing gait analysis methods. 

Currently, the UPDRS is used to track the response of motor symptoms to STN-DBS 

intervention. The UPDRS is a standardized test used for monitoring and measuring global 

body functioning in PD. Part III of the UPDRS is used to assess the motor performance 

of PD: normal (0), mild (1), moderate (2), severe (3) and unable to perform task (4) 

(Goetz et al., 2008). The low resolution and subjective nature of this rating scale may 

hinder the evaluation of the effectiveness of STN-DBS in PD. Furthermore, there is only 

one item (item 29) on the UPDRS that relates specifically to gait: in UPDRS part III, an 

overall score is given to rate the participant’s gait performance. The UPDRS provides an 

overview of motor disability, but is limited in its quantitative and objective assessments 

of motor impairments (Tavares et al., 2005). In order to track the changes in the gait 

features that are affected in PD, the current study employed a more objective and 

quantitative assessment tool (Tavares et al., 2005). 

The PKMAS system was used to extract important gait parameters from PD 

individuals during above ground varied gait speed walking tasks. The system provides a 

large set of parameters that will be grouped and analyzed according to a well published 

gait feature model (Galna et al., 2015; Galna et al., 2013; Lord et al., 2013).  Lord et al. 

(2013) published a principle component analysis, which grouped 16 gait parameters into 

five general features of gait: pace, rhythm, asymmetry, variability and postural control.  

The current chapter examines the change in gait parameters, between levodopa 

and STN-DBS treatment conditions, on varied gait speed tasks. It is hypothesized that 

gait function is predominantly regulated by non-dopaminergic systems. Thus it is 

predicted that the gait features will continue to worsen following STN-DBS in both 

walking conditions. This study will provide, for the first time, a quantitative and objective 

assessment of the specific gait feature changes affected by long-term STN-DBS 
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stimulation in individuals diagnosed with PD. This quantification will shed light on the 

features of gait that continue to worsen following implantation.    

3.2 Methods 

3.2.1 Participants 

The same PD participants were used in the ensuing chapter as in Chapter 2. The PD 

participants had all been diagnosed previously by a movement disorder neurologist, and 

were recruited from the Movement Disorder Clinic at Western University Hospital in 

London, Ontario, Canada. PD inclusion criteria comprised (1) Diagnosis of idiopathic 

PD; (2) approved for implantation of bilateral STN-DBS stimulating electrodes; (3) 

cognitively stable (assessed with Mini-Mental State Exam [MMSE]); (4) sufficient 

knowledge of the English language. 

 Control participants were healthy and age-matched to the PD participants. They 

were recruited from the general public. Control inclusion criteria comprised (1) between 

ages of 50-70 years ; (2) ability to walk without gait aid (e.g. cane or walker). Exclusion 

criteria for all participants included (1) any neurological disorder with residual motor 

deficits; (2) history of limb/joint damage, or hip/knee replacements that may affect gait 

performance. All PD participants were enrolled prior to their DBS surgery, allowing pre-

assessment before implantation. Human Subjects Research Ethics Board (HSREB) 

(Western University Ethics [WUE] [# 103928]) approved the study. All participants 

provided informed consent.  
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Table 3-1. Participant demographics for study. Controls compared with STN-DBS participants on various 

demographics. 
 Participant Groups 

 Control (n=11) STN-DBS (n=10) P1 value 

Age (yrs) 63.72 (±5.52) 63.91 (±5.65) .944 

Females, n (%) 7 (63%) 4 (40%) .302 

PD Duration (yrs) −− 10.61 (±3.30) −− 

LED (Pre-op) (mg/day) −− 1374.13 (±477.34) −− 

LED (6 months post-op) (mg/day) −− 414.75 (±248.26) −− 

UPDRS ON score (Pre-op) −− 22.10 (± 14.08) −− 

UPDRS ON score (6 months post-op) −− 11.25 (± 4.08) −− 

SD, standard deviation; LED, levodopa equivalency dosage; p-value corresponds to independent samples t-tests for differences 

between controls and PD participants; significance was set to p <.05; Calculation for LED was based on a standardized formula from 

literature by Tomlinson et al. (2010) (Tomlinson et al., 2010); means are displayed with standard deviation in brackets. 

3.2.2 Clinical outcomes and gait assessment 

The same standardized questionnaires and clinical scales that were used in Chapter 2 

were used in the current chapter (see Table 2-1.). Gait assessments were conducted in the 

same manner as Chapter 2 (see section 2.2.4.). The same gait parameters were collected 

based on the previously mentioned gait model (see Table 2-2.). Gait parameters are 

expressed as mean values. Variability is calculated by calculating the mean of the 

standard deviation between the left and right steps. The asymmetry is calculated by 

taking the absolute difference between the left and right steps.  

3.2.3 Calculation of total electrical energy delivered 

A major determinant of tissue stimulation by the DBS lead is the electrode impedance. 

The impedance is the opposition to current flow, effectively the ratio of current delivered 

for a given voltage, measured in ohms. A main characteristic of impedance is that it is 

assessed at a specified frequency, e.g. 1kHz or some other frequency (a sine wave of 

voltage is used for the test).   This distinguishes it from resistance, which is the ratio of 

constant current delivered for a constant voltage. Higher impedance signifies a lower 

therapeutic efficacy due to lower current being delivered to brain tissue. Impedance is 
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modified in two ways: 1) foreign body encapsulation around the electrode 2) electrical 

properties of brain tissue (grey and white matter)  (Satzer, Maurer, Lanctin, Guan, & 

Abosch., 2014). With regards to the operation the impedance would also inform the 

programmer that the electrodes and leads are intact. Infinite impedance indicates the lead 

is broken. Therefore, impedance measurements were also used in the selection process of 

optimal contact points for current delivery. 

The various combinations of settings on the DBS device make comparisons 

between STN-DBS participants challenging. The total electrical energy delivered (TEED) 

value provides a standardized output measure which allows comparisons to be made 

between patients. TEED was calculated by using the programmed DBS parameters 

(voltage, frequency and pulse width) along with the measured system impedance. Koss et 

al. (2005) present the formula which had been derived from equations of basic electronics 

(Koss et al., 2005). 

TEED = 
         

 
 (  ) 

 Where V is the voltage (volts), pw is the pulse width (µs), f is the frequency (Hz) 

and R is the impedance (Ω). Based on this formula the output measure estimates the total 

energy being delivered by the stimulator (µJ). 

3.2.4 Experimental Timeline 

The timeline used in the current chapter was also used in Chapter 2. Chapter 3 

examines the other visits not explored in chapter 2 (V0-V8). Briefly, the PD participants 

came to the facility 1 week pre-operation, 1 week post-operation, 2 weeks post-operation 

and then up to 6 months post-operatively (see Table 2-3.). The pre-operation time point 

was defined as the date where the PD participants have reached their best clinically 

optimized medication dosages, which optimally alleviated their symptoms. This 

optimized time point required PD participants to be on a stable dosage of medications, 

without any change in the past year. This optimized dosage was assessed and quantified 

by a trained movement disorder neurologist. Participants were brought into the research 

facility one week pre-operatively to collect a baseline measure of their ON medication 
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state. The 6 month post-operation time point was defined as the date where the PD 

participants experienced their best clinically optimized DBS stimulator settings, which 

optimally alleviated their symptoms determined by a trained movement disorder 

neurologist.  

3.2.5 Data Analysis 

Demographic and clinical characteristics were summarized using means and standard 

deviations. Between-group demographic comparisons were made with independent-

samples t-tests. Descriptive statistics were calculated for the spatiotemporal gait 

parameters based on the raw scores exported from the PKMAS software system. Gait 

parameters were expressed as (a) mean spatiotemporal characteristics, (b) step-to-step 

variability (calculated by combining the average of left and right standard deviations) and 

(c) asymmetry (calculated by finding the absolute difference between left and right steps 

on each parameter). No extreme outliers were found in the data, assessed using boxplots. 

All data met Shaprio-Wilks test for normality and parametric paired-samples t-tests were 

used to compare baseline values to 6 months post-operation. Furthermore, the 

independent samples t-test was used to compare the STN-DBS participants with control 

participants. Statistical significance was set at p < .05 (two-sided). Corrections were 

made for multiple comparisons within each gait feature category (related gait 

parameters): two parameters in gait feature (p < .025), three parameters in gait feature (p 

< .016). A pearson correlation was conducted to examine the relationship between the 

change in TEED and the change in gait parameters. It was thought that changes in gait 

parameters may stem from changing the TEED over the 6 month study. All statistical 

analyses were conducted using SPSS (v21.0, IBM Corporation, Chicago, IL). 

3.3 Results 

3.3.1 Demographic and Clinical Assessments 

Twenty-one participants, 10 with bilateral STN-DBS (Age: 63.9 (±5.65), Females: 4 

(40%), PD duration: 10.6 (±3.30)) and 11 age-matched healthy controls (Age: 63.72 

(±5.52), Females: 7 (63%)), were included in the analysis. 
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Demographic and clinical characteristics are presented in Table 3-1. Compared 

with the control group, the STN-DBS participants were the same age and had 

proportionately equal number of males and females. Clinical assessments are presented in 

Table 3-2. The STN-DBS group had no significant change in the GDS, ABC or FOG-Q 

questionnaires between the pre-operative and 6 months post-operative visits. The ABC 

and GOD-Q scales measure axial improvement, this result is to be expected. The 

maintained GDS scale score is an interesting finding that was not expected and will be 

discussed further. Compared with the control group, the STN-DBS group scored worse 

on the GDS and ABC questionaries’ at pre-operation and 6 months post-operation. In the 

STN-DBS group there was no significant decrease in global cognition from pre-operation 

to 6 months post-operation. In the STN-DBS group, the UPDRS ON scores (see Table 3-

3.) and LED (see Table 3-2.) significantly decreased from pre-operation to 6 months 

post-operation.  

Table 3-2. Scores from the clinical rating scales and questionnaires. Scores are displayed for STN-DBS 

participants at the pre-operative and 6-months post-operation visits. Control participants are also displayed. 

Mean scores and standard deviations are shown.  

  STN-DBS Participants 

Clinical 

Scales 

Controls 

(n=11) Baseline (n=10) 

P1 

value 

6 Months 

(n=10) 

P2 

value 

Change in Scores  

(n=10) 

P3 

value 

MoCA 27.20 (1.79) 26.70 (2.41) .690 23.60 (6.09) .111 - 3.10 (5.34) .100 

GDS 3.50 (2.65) 9.50 (7.57) .049 11.8 (8.59) .018 2.30 (6.83) .156 

ABC 96.25 (1.69) 63.25 (14.40) .000 67.50 (20.45) .002 4.25 (29.80) .633 

FOG-Q −− 12.00 (6.11) −− 6.90 (6.05) −− - 5.10 (7.88) .071 

LED 

(mg/day) 

−− 1374.13 (477.34) −− 414.75 (248.27) −− - 975.38 (498.79) .000 

TEED 

(µJ) 

−− 13.03 (11.53)* −− 90.31 (25.70) −− 77.28 (23.73) .000 

TEED, total electrical energy delivered; *TEED baseline is from device turn on at 2 weeks post-operation (V2); p1 represents the 

difference in the STN-DBS group from V0 to V8 using paired-samples t-tests; p2 represents the difference between the STN-DBS 

group and the control group using independent-samples t-tests; TEED baseline is at V2 (device turn on); Significance was set to p = < 

.05; means are shown with standard deviation in brackets. 
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Table 3-3. UPDRS subscores divided into appendicular and axial ratings. Scores are displayed for STN-

DBS participants at the pre-operative and 6-months post-operation visits. Mean scores and standard 

deviations are shown. 

 STN-DBS Participants 

Clinical Scales Baseline (n=10) 

6 Months 

(n=10) 

Change in 

Scores  (n=10) 

P1 

value 

UPDRS ON Total 22.10 (14.08) 11.25 (4.29) - 10.85 (12.84) .026 

Appendicular Subscores     

Rigidity (item 22) 4.95 (3.81) 1.75 (1.14) - 3.20 (3.86) .028 

Upper Limb 3.05 (2.03) 0.70 (0.67) -2.35 (1.97) .004 

Lower Limb 1.90 (2.07) 1.05 (0.80) -0.85 (2.33) .279 

Akinesia (item 23-26) 8.05 (5.49) 4.55 (3.18) - 3.5 (4.67) .042 

Upper Limb 5.5 (4.08) 3.45 (2.87) 2.05 (3.39) .089 

Lower Limb 2.55 (1.96) 1.10 (0.94) 1.45 (2.47) .097 

Axial Subscores     

Gait (item 29-30) 1.80 (1.39) 1.65 (0.57) - 0.15 (1.56) .812 

Speech (item 18) 0.90 (1.26) 0.15 (0.24) - 0.75 (1.25) .104 

Bradykinesia (item 31) 0.60 (1.07) 0.25 (0.42) - 0.35 (1.29) .458 

UPDRS, Unified Parkinson’s Disease Rating Scale;p1 represents the UPDRS score difference, in the STN-DBS group, from baseline 

to 6 months post-operation using paired-samples t-tests; Significance was set to p = < .05; means are shown with standard deviation in 

brackets. 

3.3.2 DBS stimulator settings 

The DBS stimulator was switched on at 2 weeks post-operation. All STN-DBS 

participants were set to the same initial DBS settings (1.5 volts, 90 µs, 130 Hz). The DBS 

stimulator was set to a monopolar stimulation setting in two STN-DBS participants. All 

other STN-DBS participants were set to bipolar stimulation (see Table 3-4.). While the 

TEED values were different on either side, the values were not significantly higher on the 

left side compared with the right (p = .079). 
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Table 3-4. Initial stimulator settings for each STN-DBS participant at 2 weeks post-operation. DBS 

settings include contacts used (C+ indicates pulse generator case as cathode), voltage (V), pulse width (μs) 

and frequency (Hz). Monopolar settings use C+ as a contact point, while bipolar settings do not. 

 STN-DBS participants at device turn on 

 Left STN  Right STN 

Subjects Contacts V PW F TEED  Contacts V PW F TEED 

DBS-01 C+2- 1.5 90 130 6.63  9+10- 1.5 90 130 4.08 

DBS-02 1-2+ 1.5 90 130 31.35  9-10+ 1.5 90 130 17.84 

DBS-03 2-3+ 1.5 90 130 51.29  C+10- 1.5 90 130 23.54 

DBS-04 1-3+ 1.5 90 130 2.22  10-11+ 1.5 90 130 5.01 

DBS-05 C+2- 1.5 90 130 12.54  C+10- 1.5 90 130 12.51 

DBS-06 1-3+ 1.5 90 130 10.11  8-11+ 1.5 90 130 6.99 

DBS-08 C+10- 1.5 90 130 4.48  C+2- 1.5 90 130 5.07 

DBS-09 1-2+ 1.5 90 130 4.71  9-10+ 1.5 90 130 3.31 

DBS-11 1-2+ 1.5 90 130 35.51  9-11+ 1.5 90 130 10.98 

DBS-12 1-2+ 1.5 90 130 6.09  9-11+ 1.5 90 130 6.31 

Average  1.5 90 130 16.49 (16.81)   1.5 90 130 9.57 (6.68) 
TEED, total electrical energy delivered measured in µs; V, voltage measured in volts; PW, pulse width measured in µs; F, frequency 

measured in Hz. Average = means of the values with standard deviation in brackets. 

 

At 6 months post-operation, the two monopolar STN-DBS participants had only 

their right DBS lead switched to bipolar while the left remained monopolar (see Table 3-

5.). Participant 3 had their left STN bipolar contact locations changed as well. The 

changes occurred due to insufficient symptom improvement at the monopolar setting, 

assessed by a trained movement disorder neurologist. All STN-DBS participants received 

an increase in voltage over the 6 month period as a standard clinical practice in DBS 

stimulation. A registered movement disorder neurologist completed these changes in 

settings at scheduled clinic visits. The TEED values were not significantly higher on the 

left side compared with the right (p = .695). 
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Table 3-5. Final stimulator settings for each STN-DBS participant at 6 months post-operation. DBS 

settings include contacts used (C+ indicates pulse generator case as cathode), voltage (V), pulse width (μs) 

and frequency (Hz). Monopolar settings use C+ as a contact point, while bipolar settings do not. 

 STN-DBS participants at 6 months post-operation 

 Left STN  Right STN 

Subjects Contacts V PW F TEED  Contacts V PW F TEED 

DBS-01 C+2- 3.9 90 100 91.02  9+10- 3.9 90 100 92.74 

DBS-02 1-2+ 3.8 90 100 103.81  9-10+ 3.8 90 100 121.69 

DBS-03 0-3+ 3.6 90 130 107.89  9-11+ 4.6 90 130 73.18 

DBS-04 1-3+ 3.4 90 130 50.58  10-11+ 3.8 90 130 105.59 

DBS-05 C+2- 4.0 90 130 154.97  8+11- 4.1 90 130 101.33 

DBS-06 1-3+ 2.5 90 130 50.40  8-11+ 2.5 90 130 34.59 

DBS-08 C+10- 3.0 90 130 80.69  C+2- 2.7 90 130 68.34 

DBS-09 1-2+ 3.0 90 130 63.13  9-10+ 3.4 90 130 69.32 

DBS-11 1-2+ 3.5 90 130 132.95  9-11+ 3.9 90 130 92.64 

DBS-12 1-2+ 3.0 90 120 89.39  9-11+ 3.5 90 120 121.98 

Average  3.37 90 123 92.48 (34.07)   3.62 90 123 88.14 (27.14) 
TEED, total electrical energy delivered measured in µs;V, voltage measured in volts;PW, pulse width measured in µs;F, frequency 

measured in Hz. Average = means of the values with standard deviation in brackets. 

3.3.3 Difference in gait parameters in the normal walk (SELF)  

When compared with the control group at pre-operation, the STN-DBS showed 

impairment in 6 out of the 16 gait parameters related to pace (velocity and step length), 

variability (step length SD), asymmetry (step time and single support time) and postural 

control (step width SD) (see Figure 3-1. and Figure 3-2.). Rhythm remained the same 

across groups at pre-operation. Following 6 months of stimulation, the STN-DBS group 

only differed from the control group on 3 parameters related to pace (step length), 

variability (step length SD) and asymmetry (step time). Two parameters, rhythm and 

postural control, remained unchanged across groups 6 months post-operation. 

 Within the STN-DBS group there was improvement in 4 parameters associated 

with pace (velocity and step length), variability (step time SD) and postural control 

(double support time). Two parameters, rhythm and asymmetry, remained unchanged 

within the STN-DBS group 6 months post-operation. 
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p = .013* 

p = .009* 
p = < .001* 

p = .016* 

p = < .000* 

p = .001** p = .008** 

p = .016** 

Figure 3-1. Gait features pace, variability, rhythm and the respective gait parameter outcomes pre-

operation and 6 months post-operaton on the SELF gait task. The difference between controls and the 

PD group was assessed using independent-samples t-tests.  The difference within the PD group from baseline 

to 6 months of STN-DBS stimulation was assessed using a paired-samples t-test. Corrections for multiple 

comparisons were conducted by dividing the p-value by the number of parameters in each feature: * indicates 

p< . 025, ** indicates p< .016. The mean values are displayed in the bar graph with standard deviation as the 

error bars. 
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Figure 3-2. Gait features asymmetry, postural control and the respective gait parameter outcomes 

pre-operation and 6 months post-operaton on the SELF gait task. The difference between controls and 

the PD group was assessed using independent-samples t-tests.  The difference within the PD group from 

baseline to 6 months of STN-DBS stimulation was assessed using a paired-samples t-test. Corrections for 

multiple comparisons were conducted by dividing the p-value by the number of parameters in each feature: 

** indicates p< .016, *** indicates p< .013. The mean values are displayed in the bar graph with standard 

deviation as the error bars. 

 

0

10

20

30

40

50

Step Time Asymm Stance Time

Asymm

SST Asymm DST Asymm

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

Control

PD Baseline

PD 6 Months

0

50

100

150

200

250

300

350

400

DST

M
il

is
ec

o
n

d
s 

(m
s)

 

Visit 

-2

0

2

4

6

8

10

12

14

Step Length

Asymm

Stride Width Stride Width SD

C
en

ti
m

et
er

s 
(c

m
) 

Visit 

Control

PD Baseline

PD 6 Months

Asymmetry Feature 

 

  

 

 

 

Postural Control Feature 

 

 

 

 

 

 

 

 

 

 

 

 

 

p = .008** 

p = .008*** 

p = .001*** 

p = .002*** 

p = .001** 



77 

 

3.3.4 Difference in gait parameters in the fast walk (FAST) 

When compared with the control group at pre-operation, the STN-DBS showed 

impairment in 4 out of the 16 gait parameters related to pace (velocity and step length), 

asymmetry (stance time) and postural control (step length asymmetry) (see Figure 3-3. 

and Figure 3-4.). Variability and rhythm remained the same across groups at pre-

operation. Following 6 months of stimulation, the STN-DBS group differed from the 

control group on 2 parameters related to pace (velocity and step length). All other 

parameters remained unchanged across groups following 6 months of STN-DBS 

intervention. 

 Within the STN-DBS group there was improvement in 2 parameters associated 

with variability (step velocity SD) and postural control (step length asymmetry). Pace, 

rhythm and asymmetry did not change between pre-operation and 6 months post-

operation within the STN-DBS group. 
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Figure 3-3. Gait features pace, variability, rhythm and the respective gait parameter outcomes pre-

operation and 6 months post-operaton on the FAST gait task. The difference between controls and the 

PD group was assessed using independent-samples t-tests.  The difference within the PD group from 

baseline to 6 months of STN-DBS stimulation was assessed using a paired-samples t-test. Corrections for 

multiple comparisons were conducted by dividing the p-value by the number of parameters in each feature: 

* indicates p< . 025, ** indicates p< .016. The mean values are displayed in the bar graph with standard 

deviation as the error bars. 
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Figure 3-4. Gait features asymmetry, postural control and the respective gait parameter outcomes 

pre-operation and 6 months post-operaton on the FAST gait task. The difference between controls and 

the PD group was assessed using independent-samples t-tests.  The difference within the PD group from 

baseline to 6 months of STN-DBS stimulation was assessed using a paired-samples t-test. Corrections for 

multiple comparisons were conducted by dividing the p-value by the number of parameters in each feature: 

*** indicates p < .013. The mean values are displayed in the bar graph with standard deviation as the error 

bars. 
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3.3.5 Correlation of TEED values to gait parameter changes 

The correlation of TEED to the gait parameters signified which parameters were related 

to the increase in TEED (see Table 3-6.). It was found that in the SELF walking task all 

parameters that were significantly improved after 6 months of STN-DBS stimulation 

were correlated with an increase in TEED. In the FAST walking task only step length 

asymmetry was correlated with an increase in TEED. With a decreased LED it seems that 

a higher TEED value is positively correlated with an improvement in pace for SELF 

walking and postural control in FAST walking.  

Table 3-6. Correlation between the change in gait parameters and the change in TEED values. Change in 

parameters were measured in SELF and FAST gait speed tasks.   

 STN-DBS  Participants 

Gait Feature/Parameter 

Change in 

SELF    

(n=10) 

Correlation with 

change in TEED  

r (p1) 

Change in 

FAST    

(n=10) 

Correlation with 

change in TEED  

r (p2) 

Pace     

Step Velocity (cm/sec) 10.02 (16.49) -.571 (.009)* 4.48 (13.46) -.407 (.075) 

Step Length (cm) 5.09 (7.87) .509 (.022)* 2.41 (8.19) .222 (.346) 

Variability     

Step Time SD (ms) - 1.71 (1.9) -.411 (.072) - 0.87 (2.60) -.009 (.972) 

Step Length SD (cm) - 0.08 (0.38) -.363 (.115) - 0.15 (0.38) -.383 (.095) 

Step Vel. SD (cm/sec) -0.20 (0.42) .108 (.650) - 0.39 (0.49) -.242 (.304) 

Rhythm     

Step Time (ms) - 12.60 (51.05) .366 (.113) 10.5 (44.50) .305 (.191) 

Stance Time (ms) - 20.10 (59.22) .253 (.282) 12.95 (40.00) .208 (.379) 

SST (ms) 2.00 (45.83) .444 (.050) 3.00 (45.70) .168 (.479) 

Asymmetry     

Step Time Asymm (ms) 8.0 (15.05) -.355 (.124) 0.90 (11.65) -.075 (.754) 

Stance Time Asymm (ms) - 1.15 (22.57) -.393 (.086) 2.20 (13.22) -.032 (.894) 

SST Asymm (ms) - 3.50 (17.78) -.264 (.261) - 0.60 (11.80) -.160 (.499) 

DST Asymm (ms) - 0.80 (3.71) .087 (.724) - 0.10 (3.83) -.060 (.802) 

Postural Control     

Step Length Asymm (cm) -0.76 (3.28) .486 (.030) - 2.13 (2.78) .550 (.012)*** 

Stride Width (cm) 0.21 (3.31) -.455 (.044) 0.85 (2.24) -.476 (.034) 

DST (ms) - 36.6 (41.57) -.539 (.013)*** 4.1 (31.92) -.261 (.266) 

Stride Width SD (cm) -0.09 (.24) -.017 (.945) 0.02 (0.41) -.008 (.973) 
SST, single support time; DST, double support time; p1 represents the correlation between the change in SELF gait parameters and the 

change in TEED values using a bivariate Pearson correlation; p2 represents the correlation between the change in FAST gait 

parameters and the change in TEED values using a bivariate Pearson correlation; corrections for multiple comparisons: * indicates p< 

. 025, *** indicates p< .013; means are shown with standard deviation in brackets for change values.  

 

 

 

 

 

 

 

 



81 

 

3.4 Discussion 

In the present study, the aim was to determine the change in gait features following STN-

DBS intervention in PD. It was hypothesized that axial gait function is controlled 

predominately by a non-dopaminergic system. Thus it was predicted that STN-DBS, 

acting through the BG dopaminergic system, would not improve gait features following 6 

months of stimulation. Furthermore, it was also predicted that appendicular symptoms 

would improve significantly and would continue to stay improved. This is the first study, 

to our knowledge, to examine extensive gait parameters in individuals with PD 

undergoing STN-DBS stimulation. The results show little improvement in axial gait 

function following intervention with STN-DBS regardless of walking task. While the 

study may have been underpowered, the results support the differences between the axial 

versus the appendicular control of movement that contributes to gait dysfunction in PD.  

In the next few sections appendicular and axial PD symptoms outcome will be 

discussed. The discussion will first examine PD participant performance with the 

performance of the controls, developing an understanding of the impaired features in the 

PD population. The discussion will shift toward axial gait outcome following 6 months of 

STN-DBS in both a preferred walking speed and fast walking speed task. Finally, 

improvements in non-motor features of the STN-DBS population were found and will be 

discussed. The discussion begins with defining the two time-points studied in the current 

paper. 

3.4.1 Defining time points: optimized medication vs. optimized STN-DBS 

In order to examine the main question stated above, STN-DBS participants were assessed 

in the pre-operative and longer term (6 month) period. The 6 month time period was 

chosen based on previous literature, which demonstrates a significant improvement in 

DBS motor symptoms at this time point (Niu et al., 2012; Weaver et al., 2009). Anderson 

et al. (2006) studied 96 STN-DBS participants for the maximal improvement in UPDRS 

off medication/STN-DDBS versus on medication states/STN-DBS.  This group explored 

6 months and 12 months post-operation. They found that 6 months produced a 50% 

improvement in UPDRS scores between OFF and ON states. At 12 months post-
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operation there was a 48% improvement in the UPDRS scores between OFF and On 

states.  

Prior to the surgery each PD participant had been treated with pharmacotherapies 

for several years. The pre-operative time point was considered to be the PD participants’ 

stabilized medication state to control his or her symptoms. The trained movement 

disorder neurologist assessed this optimized dosage of dopaminergic medication. The 

MLE was examined at immediate post-operative period when the patients were on all the 

medications that they were taking pre-operatively and the DBS device had not been 

turned on. This effect was discussed in chapter 2. Following 6 months of STN-DBS 

device titration, by the same trained movement disorder neurologist, the STN-DBS 

participants are at a clinically stabilized setting on their device based on their symptoms. 

At this time point dopaminergic medications have been reduced and some participants 

were off all medications. It should be mentioned that the reduction in medication is a 

requirement when increasing the stimulator and it is recognized to be a confounding 

variable.   

3.4.2 Between group gait impairments: control compared with PD ON medication  

Overall, PD participants ON medication had a significant amount of axial gait 

impairments, compared with controls, at the SELF walking speed pre-operation. 

Specifically, PD participants had significantly worse pace, variability, asymmetry and 

postural control compared to controls. These findings are in agreement with previous 

literature that demonstrates PD participants have significantly worse pace (Hass et al., 

2012; Vokaer, Azar, & de Beyl., 2003), variability (Baltadjieva, Giladi, Gruendlinger, 

Peretz, & Hausdorff, 2006), and asymmetry (Yogev, Plotnik, Peretz, Giladi, & 

Hausdorff, 2007) in the medication state at the SELF gait speed task when compared with 

controls. The recruited PD participants had an average disease duration of 10 years, 

which is when axial symptoms become the dominant symptom (Hely, Morris, Reid, & 

Trafficante, 2005).  

 A few parameters maintained impairment in the PD group, when compared with 

controls, regardless of the gait speed in the ON medication pre-operation state. These 
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parameters were velocity and step length. The reduction in step length and velocity in PD 

participants ON medication, compared with controls has been well established in the 

literature (Hass et al., 2012; Morris, Iansek, Matyas, & Summers., 1996; O’Shea, Morris, 

& Iansek., 2002). Morris et al. (1996) postulated that the step length is directly related to 

the reduction in gait velocity (Morris et al., 1996). Thus, when velocity is significantly 

decreased it is expected that step length will also be reduced. Interestingly it was found 

that step length variability was significantly impaired at the SELF walking speed task, but 

improved when PD participants walked at their FAST gait speed. While the mechanism 

for this improvement is not understood fully, it matched previous findings in literature 

(Vieregge, Stolze, Klein, & Heberlein., 1997). The improvement in asymmetry when PD 

participants walked at FAST compared with SELF has been reported in literature (Yogev 

et al., 2007). Axial gait impairments continue to persist even when ON medication. 

Interestingly, the results suggest that at higher gait speeds some gait parameters are 

improved, compared to controls, ON medication. However, this may not be an actual 

improvement since this increased speed for example may actually represent tachykinesis, 

which increases fall risk. 

 The exact underpinning of gait parameter impairment during medication state is 

not known, but various explanations have been postulated. The BG is important for the 

planning and execution of self-initiated movements (Boecker, Jankowski, Ditter, & 

Scheef., 2008). The supplementary motor area (SMA) stores learned motor sequences 

(such as walking) for execution when needed (Grafton, Woods, & Tyszka., 1994; Tanji & 

Shima., 1994). A recent study by Wu et al. (2011) found there is a reduced functional 

connectivity between the BG and SMA during performance of self-initiated tasks in PD 

participants (Wu et al., 2011). This reduced connectivity may play a role in the increase 

in variability and the impairment in pace. The increase in asymmetry in PD gait has been 

associated with an asymmetric activation of the SMA during walking (Shibasaki, 

Fukuyama, & Hanakawa., 2004). In this scenario, the role of dopamine is largely 

unknown and may include mechanisms of even attentional regulation. 
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3.4.3 Between group gait impairments: control compared with ON STN-DBS state 

In general, it was found that there were significant gait impairments in the STN-DBS 

group compared with controls. At the SELF gait speed, PD participants showed 

impairment in pace, variability and asymmetry. These impairments closely match those 

of the medication state.  

 As with the medication state, STN-DBS participants showed improvement in gait 

parameters when walking at their FAST gait speed, when compared with controls. The 

impairment in step length, regardless of gait speed task, has been documented previously 

in literature following STN-DBS operation (Rocchi et al., 2012). Overall, STN-DBS state 

showed slight impairment when compared with controls. 

It is conceivable to conjecture that slow walking is a combination of appendicular 

and axial control systems and hence the effects of disease are manifested most when the 

speed is self-paced and thus slower. Following STN-DBS, the appendicular symptoms, 

although improved may not be able to sufficiently mask the effects of poorer axial 

symptom improvements. Hence the differences between controls, PD and post-DBS are 

most visible at this self-paced walking speed. At faster gait speeds the participants would 

have less time to make limb movement changes and their body inertia would be much 

greater (McGeer., 1993). In this state it may be that the PD individuals “lock” their trunk 

muscles, allowing the appendicular features to control the walking. However, this is only 

conjecture to explain the finding that fast gait did not differ significantly when compared 

with controls is interesting.  

3.4.4 Within group gait impairments: medication state compared with STN-DBS state 

In general, STN-DBS provided an improvement in 4 of the 16 gait parameters associated 

with pace, variability and postural control when compared with medication state at the 

SELF gait speed. Interestingly, there were fewer axial gait parameter improvements in 

the FAST gait speed task compared to the SELF gait speed task. This would fit the 

hypothesis that the main improvements are appendicular and hence the gait 
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improvements are not due to the contributions of the improvement in axial symptom 

complex. 

The main finding was that following 6 months of STN-DBS surgery, PD 

participants were able to walk faster than in the medication state on the SELF gait 

walking task. The improvement found in step velocity and step length, between 

medication and STN-DBS state, matches a previous study that showed this relationship in 

the SELF gait speed task (Lubik et al., 2006; Stolze et al., 2001). Interestingly it was 

found that this improvement in step velocity and step length was correlated with an 

increase in TEED (see Table 3-6.).  

The finding that stride velocity and step length remained unchanged between 

medication state and STN-DBS state at FAST gait speed is novel. The inability of PD 

participants to receive similar improvement in the FAST gait speed task may be a result 

of unchanged body bradykinesia. As reported from the UPDRS, body bradykinesia and 

axial signs overall remained unchanged following 6 months of STN-DBS. Chien et al. 

(2006) found that various gait features (step velocity and step length) are accurate at 

measuring bradykinesia. Furthermore, this group found that PD participants were 

impaired in the FAST walking condition due to bradykinesia (Chien et al., 2006).  

A possible explanation for the maintained impairment in FAST walking could be 

due to SMA activity. Harada et al. (2009) found that SMA activity, in healthy 

individuals, tends to increase during faster walking tasks (Harada, Miyai, Suzuki, & 

Kubota., 2009). As discussed above, the SMA region connectivity decreases in PD. 

Furthermore, this decrease in activity is thought to play a role in akinesia (loss of 

voluntary movement) (Wu et al., 2011). Thus, an individual with PD may have an 

impaired FAST walk due, in part, to the reduction of SMA activity.  

While there was improvement in a few gait parameters following 6 months of 

STN-DBS it is not enough to confirm STN-DBS maintains benefit in axial gait features. 

The small difference between medication state and DBS state on axial gait features has 

been documented in literature using the UPDRS (McNeely & Earhart., 2013). STN-DBS 

intervention was successful at improving overall UPDRS motor scores, which highly 
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reflect appendicular motor symptoms of PD (Geurts et al., 2011). The finding that STN-

DBS improved more of the appendicular symptoms but failed to improve axial gait 

symptoms may imply that STN-DBS has a similar dopaminergic effect to PD 

medications. McNeely et al. (2013) demonstrated this relationship in 16 PD participants. 

This group found that levodopa and STN-DBS improved rigidity, bradykinesia and 

tremor in a similar manner. Most interestingly, this highlights the different control 

systems that may be involved in axial versus appendicular symptoms (McNeely & 

Earhart., 2013).  

The finding that STN-DBS does not improve gait feature impairments following 6 

months of STN-DBS contradicts previous studies that found general improvement after 6 

months (Lilleeng, Gjerstad, Baardsen, Dalen, & Larsen., 2014). However, a direct 

comparison is difficult to make due to the nature of the assessment tool. The 

contradiction may stem from the quantitative and objective review of gait in the present 

study and especially separating the appendicular versus axial control. 

3.4.5 Non-axial STN-DBS improvements 

It should be noted that while STN-DBS may not significantly improve axial gait features 

in PD, other non-motor features improve. For instance, a recent study found that STN-

DBS intervention improved life expectancy in individuals with PD compared with 

medication state (Ngoga et al., 2013). Other studies have found an improvement in 

appendicular motor features and LIDs (Harries et al., 2012; Krack et al., 2003). In 

alignment with these previous studies, the current study reported a significant decrease in 

LED values and a significant improvement in UPDRS scores. 

 Appendicular symptoms such as rigidity and akinesia were significantly improved 

following STN-DBS as reported by the UPDRS (see Table 3-7.). This finding confirms 

the influence STN-DBS has on the appendicular and thus possibly those symptoms that 

are controlled by the dopaminergic system, allowing replacement of pharmaceuticals 

with the stimulator. The ability of PD participants to have lowered LED means fewer 

consumption of pills, a reduction in motor side effects and an improved quality of life. 

Since the majority of axial gait parameters did not improve compared to the optimized 
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medication state, other stimulation targets may be considered for proper targeting of the 

axial symptoms.  

3.4.6 Limitations 

There are several limitations to the study that should be addressed. From the outset the 

study had a relatively small sample size and may have been underpowered. While it was 

not significant, the control participant group contained more females when compared to 

the STN-DBS participant group. The majority of studies find that men exhibit greater gait 

speed and stride lengths than females (Callisaya, Blizzard, Schmidt, McGinley, & 

Srikanth., 2010; Hollman et al., 2011). Therefore, when comparing the between groups it 

may appear that the STN-DBS participant group was performing better than they actually 

were on a few gait parameter measurements. If an exact equal number of males and 

females were used there may have been more parameters that are affected in the PD 

group compared with the controls. However, the size of the participant group did not lend 

itself to a study of the influence of gender factors. 

 The environment in which the tasks were conducted may have introduced a 

Hawthorne effect in our participant population. This effect is generally thought of as a 

modification or improvement in an individual’s behavior in response to their awareness 

of being observed. The research area used was contrived and may not have captured the 

true gait impairments within the PD group within a natural setting. A recent study by 

Robles-Garcia et al. (2015) found that when PD participants were aware they were being 

tested they changed their walking strategy (Robles-García et al., 2015). Implementing a 

testing regime that incorporates a more “covert” testing period would be beneficial in 

examining gait patterns of the PD population over time.  

Participants were told to withhold their medication during testing periods post-

operation, but were not tested completely “off” medication. Participants were informed to 

not take their morning medications, which provided about 8-10 hours of OFF medication. 

However, following surgery the STN-DBS participants had reduced their medication and 

most participants were completely off medication 3 months post-operation. The reduction 
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in medication may have been produced a confounding result, as patient’s may have 

suffered from drug withdrawal.  

Repeating testing for 6 months may have introduced a learning effect, however if 

a learning effect did exist it would be expected there would have been an improvement in 

both SELF and FAST walking conditions. Furthermore, the tasks were simple walking 

tasks, a task that the participants carry out every day. However, control participants 

should have been brought in more than once to determine if they experienced any change.  

3.4.7 Strengths 

The present study is the first to examine several axial gait feature changes quantitatively 

in prolonged STN-DBS state. Currently the effects of STN-DBS stimulation on axial gait 

symptoms are measured using the UPDRS. Recent studies have expressed the ability of 

the UPDRS to detect subtle gait changes is limited due to the small number of items and 

its ordinal rating system (Kelly et al., 2006; Klucken et al., 2013). The current study 

elucidated the change in several gait parameters following STN-DBS intervention. 

 The present study provided an improved method for assessing gait changes in 

response to STN-DBS. The data demonstrate the specific gait feature impairments that 

are found in both medication ON and STN-DBS On states. The study provides a 

framework for future research on viable treatment alternatives for axial symptom 

improvement in PD.  

3.4.8 Implications 

The current research sheds light on the long-term effect STN-DBS intervention has on 

axial gait symptoms. STN-DBS was successful at improving appendicular symptoms of 

PD (rated by UPDRS-III) and reducing the total medication dosage of the participants. 

However, STN-DBS was not able to improve gait features associated with asymmetry, 

rhythm variability and postural control in the SELF task. This finding is important when 

considering the inclusion criteria for the STN-DBS surgery.  
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 If a patient has significant gait impairments before surgery the current research 

suggests that other treatment options should be considered. A recent article describes the 

STN-DBS surgery as a “Pandora’s box” of complications post-operation (Galati & 

Stefani., 2015). While not every patient experiences these side effects, the risk is higher 

when proceeding with the STN-DBS operation. There are some manageable 

complications such as device dislocation and impaired wound healing, which impart 

temporary discomfort for the patient. However, there are more chronic complications 

such as anhedonia and cognitive impairment (Galati & Stefani., 2015). As discussed in 

chapter 2, cognition is an important factor in axial gait function.  

The present study suggests that individuals with PD, who experience axial gait 

impairments as their primary symptom, may want to consider other treatments options to 

avoid unwanted complications. Further analysis with a larger sample size should be 

conducted to verify this claim. However, it has been currently shown that STN-DBS has 

little to improve axial gait features.  

3.5 Conclusion 

The current study provides a specific quantitative assessment of various gait features 

changes in response to STN-DBS intervention. Overall, clinically optimized STN-DBS 

intervention at 6 months post-operation was only successful at improving pace in PD 

participants compared with medication state. The failure of STN-DBS to recover other 

axial gait features, but improves appendicular symptoms, implies that STN-DBS may 

work on similar dopaminergic systems as the commonplace PD medications. Axial gait 

parameters should be assessed and considered as inclusion criteria prior to STN-DBS 

surgery. Individuals with PD that have prevailing gait difficulties may not be ideal 

candidates for the STN-DBS surgery.  
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4. General Discussion and Conclusion 

The current thesis suggests that pre-operative/post-operative objective gait assessments 

should be conducted in order to help determine which specific gait features respond to the 

treatment. Together, there are 5 important features of proper gait function, which include 

pace, variability, rhythm, asymmetry and postural control. Determining the pre-operative 

gait features that are impaired may help to predict the outcome from STN-DBS. It was 

found that pre-operative gait feature impairments with variability, rhythm, asymmetry 

and postural control persisted following STN-DBS surgery. Pace was the only feature 

that improved significantly during the preferred walking task. The ability to predict the 

outcome of gait response to STN-DBS surgery would allow future individuals to make a 

more informed decision about pursuing STN-DBS surgery. It is suggested, from the 

current thesis, that if gait function impairment is the predominant symptom in an 

individual with PD then other treatment avenues should be explored.  

 The concept of predicting the outcome of STN-DBS surgery on motor symptoms 

has been explored in previous work. Tykocki et al. (2013) explored the notion that the 

MLE could be used as a predictive factor for STN-DBS efficacy. This group found a 

positive correlation between the MLE and the degree of improvement from STN-DBS. 

However, the improvement from the MLE is a gradient and differs between individuals 

(Tykocki, Nauman, Koziara, & Mandat, 2013). Jach et al. (2012) found the symmetry of 

the MLE is not consistent. They used fMRI and found that in 10 patients the MLE edema 

was formed in one hemisphere only and was nonexistent in another patient. In the present 

thesis the MLE was not found to improve either appendicular or axial gait symptoms. As 

discussed this result may be due to the small sample size used. However, using the MLE 

as a predictive factor for STN-DBS outcome may prove challenging due to the 

inconsistency of its occurrence.   

 Other avenues have been explored to provide a prediction to the efficacy of STN-

DBS. Tsai et al. (2009) found that responsiveness to levodopa pre-operatively was unable 

to predict the long-term outcome (18 months) of STN-DBS in 36 PD participants. This 

group found that good cognitive function and tremor dominant symptoms are good 
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predictors of STN-DBS outcome. Individuals who are older and have axial dominant 

symptoms were found to have a poorer response to STN-DBS.  

 Interestingly the current thesis found that there were fewer improvements in the 

faster walking task.  A faster walking speed fundamentally changes the dynamics of 

human gait. The increase in speed means the individual has less time to make limb 

movement changes in each step and the inertia of the body is much greater (McGeer., 

1993). Research on individuals with spinal cord injuries revealed that faster walking 

speeds rely more on spinal reflex pathways and spinal neural networks (Beres-Jones & 

Harkema., 2004). Furthermore, Harada et al. (2009) found that faster walking speeds 

tended to increase activity in the prefrontal cortex and the SMA region (Harada, Miyai, 

Suzuki, & Kubota, 2009). In section 3.4.2 it was discussed that the SMA region 

connectivity decreases in PD, which is an area that is thought to play a role in akinesia 

(Wu et al., 2011). Thus, it may be due to the decreased activity within the SMA region in 

PD that results in a less significant impact on faster gait speeds. 

Exploring gait function performance at varied gait speeds allows a more detailed 

account of the gait impairments. The data presented indicates that if axial function is 

impaired prior to surgery it may continue to be impaired. It was hypothesized that axial 

gait function is regulated by predominantly non-dopaminergic systems. While the study 

may have been underpowered, it was found that STN-DBS did little to improve axial gait 

function. This finding supports past research that has suggested levodopa and STN-DBS 

act on similar neural networks, which axial gait function is non-responsive to.  

Other regions of interest have been proposed to have a greater effect on axial gait 

function. A recent review by Follet et al. (2012) discussed the issue of STN-DBS efficacy 

on axial gait function. This review argued STN-DBS is efficient at improving 

appendicular symptoms such as rigidity, tremor and bradykinesia but falls short at 

treating axial gait dysfunction. A recent meta-analysis confirmed this finding that in the 

long-term appendicular symptoms maintain improvement but axial gait impairments 

continue to worsen (St. George, Nutt, Burchiel, & Horak, 2010). Follet et al. (2012) went 

on to discuss the PPN as a potential target for axial gait dysfunction.  



97 

 

As with the STN-DBS literature on axial gait function, the PPN literature on gait 

function is also controversial. As previously established the PPN is an important structure 

within the brainstem that is closely connected to the BG. The PPN also projects to the 

SMA, cerebellum and spinal cord (Aravamuthan, Muthusamy, Stein, Aziz, & Johansen-

Berg., 2007). It has been proposed that the axial gait function may be due in part to the 

cholinergic PPNc and glutamatergic PPNd neuronal systems. Significant loss of 

cholinergic neurons within the PPNc has been documented in the pathology of PD 

(Pahapill & Lozano., 2000). Stefani et al. (2007) explored PPN-DBS with promising 

results in 6 PD participants. It was found that PPN-DBS, in conjunction with STN-DBS, 

improved UPDRS gait scores by 37% (compared to STN-DBS alone) (Stefani et al., 

2007). However, another study by Ferraye et al. (2010) found that UPDRS gait scores 

failed to improve in response to PPN-DBS in 6 PD participants with STN-DBS (Ferraye 

et al., 2010). It can be stated, from the STN and PPN axial gait literature, that the 

subjectivity of the clinical rating scales may play a role in the conflicting reports. 

Establishing a more detailed and organized assessment of gait features will better 

elucidate the response of gait to these interventions.  

 In summary, this thesis was the first to provide a detailed and organized 

assessment of axial gait feature changes following STN-DBS intervention for PD. Future 

directions for the study will include a larger sample size and a longer follow-up period. 

The results should be interpreted with the knowledge that the study may have been 

underpowered due to the small number of PD participants (n=10). Presently, it was found 

that the surgical MLE effect did not impart any significant improvement in appendicular 

and axial PD symptoms. The clinical improvement of axial gait features were minimal 

following 6 months of STN-DBS. This may hint at a predominantly non-dopaminergic 

control system for axial gait function. Other non-dopaminergic systems should be 

investigated for clinical improvement of axial gait function.  

 

 

 



98 

 

4.1 References 

Aravamuthan, B. R., Muthusamy, K. A., Stein, J. F., Aziz, T. Z., & Johansen-Berg, H. 

(2007). Topography of cortical and subcortical connections of the human 

pedunculopontine and subthalamic nuclei. NeuroImage, 37(3), 694–705.  

Beres-Jones, J. A., & Harkema, S. J. (2004). The human spinal cord interprets velocity-

dependent afferent input during stepping. Brain, 127(10), 2232–2246.  

Ferraye, M. U., Debû, B., Fraix, V., Goetz, L., Ardouin, C., Yelnik, J., … Pollak, P. 

(2010). Effects of pedunculopontine nucleus area stimulation on gait disorders in 

Parkinson’s disease. Brain, 133(1), 205–214.  

Harada, T., Miyai, I., Suzuki, M., & Kubota, K. (2009). Gait capacity affects cortical 

activation patterns related to speed control in the elderly. Experimental Brain 

Research, 193(3), 445–454.  

McGeer, T. (1993). Dynamics and control of bipedal locomotion. Journal of Theoretical 

Biology 163(3), 277-314.  

Pahapill, P., & Lozano,  a M. (2000). The pedunculopontine nucleus and Parkinson’s 

disease. Brain : A Journal of Neurology, 123(Pt 9), 1767–1783.  

St. George, R. J., Nutt, J. G., Burchiel, K. J., & Horak, F. B. (2010). A meta-regression of 

the long-term effects of deep brain stimulation on balance and gait in PD. 

Neurology, 75(14), 1292–1299.  

Stefani, A., Lozano, A. M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., … Mazzone, 

P. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic 

nuclei in severe Parkinson’s disease. Brain, 130(6), 1596–1607.  

Tykocki, T., Nauman, P., Koziara, H., & Mandat, T. (2013). Microlesion Effect as a 

Predictor of the Effectiveness of Subthalamic Deep Brain Stimulation for 

Parkinson’s Disease. Stereotactic and Functional Neurosurgery, 91(1), 12–17.  

Wu, T., Wang, L., Hallett, M., Chen, Y., Li, K., & Chan, P. (2011). Effective 

connectivity of brain networks during self-initiated movement in Parkinson’s 

disease. NeuroImage, 55(1), 204–215.  

 

  



99 

 

Appendix A: Ethics Approval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Appendix B: Letter of Information 

Letter of Information 

  

Study Title: Optimization of Deep Brain Stimulation Parameters for Parkinson Disease 

Patients using Objective Measures  

  

Principal investigator: Dr. Mandar Jog, London Health Science Movement Disorders 

Clinic, UWO  

  

 

Introduction  
 

We are inviting you to voluntarily participate in a research project designed to objectively 

assess the short-term effects of deep brain stimulation (DBS) of the subthalamic nucleus 

(STN) surgery on mobility changes, such as gait and posture, in a laboratory setting.   

Deep brain stimulation (DBS) is a surgical procedure to implant an impulse generator 

that sends electrical signals to brain areas related to control of body movement. 

Electrodes are placed deep in the brain and are connected to a programmable stimulator 

device. Similar to a heart pacemaker, the stimulator uses electric pulses to help regulate 

brain activity. The doctor tunes the stimulator settings with a wireless device and 

stimulation settings can be adjusted as a patient's condition changes over time. This 

procedure will have been clearly explained to you by your surgeon and neurologist and 

you will have already signed a separate consent form for this operation as part of the 

treatment of your Parkinson disease.  

 

Currently, fine-tuning the stimulator is a lengthy process, and despite the large 

amount of time being spent, choosing the best setting is still largely accomplished by trial 

and error. The data collected will be used to develop a promising approach to optimizing 

STN-DBS parameters.  

 

Background  
 

Deep brain stimulation (DBS) is an important treatment option for patients with 

Parkinson disease (PD) whose medication has been ineffective. But, after more than a 

decade of clinical trials, choosing the best setting for the stimulator is still a trial and error 

practice.   

 

Under the current standard of care for DBS, patients return to the clinic a few 

weeks after the surgery for the initial device tuning. DBS settings are adjusted by a doctor 

with expertise in programming. During this process, the participant will be examined and 

questioned to avoid any known side effects (such as speech problems, dizziness, and 

rigidity). If results are not satisfactory, then more stimulation combinations would be 

tested by trial and errors.  
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In this study, we attempt to use our lab expertise to begin the development of an 

intelligent DBS programming technology. We expect that once developed, PD patients 

undergoing DBS can be assessed using our assessment techniques and we would be able 

provide guidelines for other programmers. Improved quality of life, reduced 

programming time, and even better battery life could be some potential benefits of being 

in the study.  

 

Study Funding  
The study is funded by a research grant from Movement Disorders lab at London Health 

Sciences Centre (LHSC).   

 

Nature of the research project and tasks involved  
We are looking to investigate mobility changes in 24 persons with STN-DBS recruited 

from the Movement Disorders Clinic at London Health Sciences Centre (LHSC).  This 

study requires you to attend a total of 9 visits (one pre- and one post-operative assessment 

and 7 follow-up programming sessions) over the course of 24 weeks.  

  

At each visit, you will be required not to take your morning medication until after 

the study procedure is finished. As a result, you may experience some symptoms and side 

effects of your disease. However, the side effects should not be permanent and they 

should be relieved after you resume your routine medication schedule.  

  

You are eligible for the study based on the following criteria:    

  

1. Diagnosed Idiopathic Parkinson Disease 

2. Movement disorders with debilitating symptoms (tremor, stiffness) while 

medications have begun to lose effectiveness.  

3. Severe motor fluctuations with disabling off periods and dyskinesia during on 

phases  

4. Assessed for eligibility for the DBS procedure  

5. Able to give informed consent  

6. Able to visit the clinic for assessment  

7. No dementia or psychiatric abnormalities.  

  

Brain Surgery/Pacemaker:  If you have had previous brain surgery or a cardiac 

pacemaker, you CANNOT BE IN THIS STUDY.  Please notify the research team if you 

have experienced either of these conditions.   

  

Unstable Pharmacological Treatment: If you have moderately severe Parkinsonism such 

that your medication routine is unstable then you CANNOT BE IN THIS STUDY.  

Please notify the research team if this is the case.  

  

Dementia: If you have dementia (as assessed by your doctor), severe cognitive 

disturbances or severe psychiatric symptoms (in particular hallucinations and depression), 

then you CANNOT BE IN THIS STUDY. Please notify the research team if you have 

experienced or are experiencing these conditions.   
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The research visits will require you to come to Dr. Jog’s research facilities located at 

South Street Hospital in London, Ontario.   

  

The visits will be completed as outlined below:  

  

Visit 1: One Week Pre-Operation  

Clinical rating scales for movement difficulties and other difficulties (depression, etc.) 

such as the UPDRS and the MoCA will be administered in this visit. The Unified 

Parkinson's Disease Rating Scale (UPDRS) is a widely used measure of impairment and 

disability associated with Parkinson Disease (PD). The Montreal Cognitive Assessment 

(MoCA) test is a brief 30-question test which assesses different types of cognitive 

abilities such as short-term memory and concentration.  

 

Following these scales, a whole-body mobility and gait assessment will be 

performed. This data is collected to analyze your condition before the surgery. This 

session may take roughly two hours.  

  

Visit 2: One Week Post-Operation 

The clinical rating scales, as well as the whole-body mobility and gait assessment will be 

conducted similar to Visit 1. Data will be collected over two periods of the day; each 

period will take roughly two hours.   

The study doctor will select the best contact of the implanted electrode to produce more 

improvement in one targeted symptom, with fewer side effects.   

  

Visits 3-9: 2, 3, 4, 8, 16, 20 and 24 Weeks Post-Operation 

Once the best electrode contacts are chosen for each side, programming the DBS device 

will start on the third visit, two weeks after surgery.  In this visit and all the follow-up 

visits, you will participate in a morning and afternoon programming session, each lasting 

approximately two and a half hours. During these sessions, there will be alternating 

movement assessment and device programming periods.  

  

Motor Function:   
During each visit, a researcher will complete the United Parkinson’s Disease Rating 

Scale (UPDRS).  This is the same assessment that your doctor completes with you during 

your routine clinic visit.  It assesses the condition of your disease and the quality of your 

movements, including: stiffness, tremor, walking, activities of daily living, speech, etc.  It 

is a non-invasive assessment and will take approximately 10 minutes to complete.    

  

Whole-body Mobility Assessment:  
The whole-body mobility is assessed using Animazoo IGS 180 system. You will be 

dressed in a lightweight, stretchable, and breathable Lycra suit over your regular clothing. 

You will also wear a head sensor attached to a lightweight cap, as well as fingerless 

gloves and shoe attachments with hand and foot sensors. The total weight of the suit is 

1.5 kg.     
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Gait and Speech Measurements:  
The GAITRite carpet will be used for gait measurements. It consists of a roll-up carpet 

with sensor pads used to measure functional ambulatory status. You will be required to 

walk on the walkway, so that the system can capture your walking patterns in various 

ways. Your speech will be recorded using a head-mounted microphone and a digital 

recording device.  

  

Video recording:   
The gait and posture tasks of this study are video recorded for data analysis purposes 

only. The recorded video will be coded and not linked to your personal information.  

 

Benefits, risks and inconveniences:  
You may not benefit directly from participation in this study.  However, the results may 

contribute to assessment of DBS parameters. Improved outcomes and quality of life, 

reduced programming time, and even better battery life could be some of the direct 

benefits. The potential side effects of DBS surgery will have been explained to you by 

your doctors as part of your treatment.   

  

The full body suit is a light weight and fully portable technology for collecting 

information about your mobility. There is a minimal risk associated with wearing such a 

suit as the system only uses simple sensors that are attached to the suit. Some study 

participants may experience discomfort such as itching and sweating in their body while 

wearing the suit.   

  

Some study participants may experience minor emotional distress with completing the 

scales and questionnaires. Scales will be administered by an experienced researcher 

trained in administering items in a sensitive manner. You will be allowed rest periods as 

necessary during the scales and questionnaires to facilitate comfort.   

  

Some study participants may be uncomfortable with being video taped.  However, the 

research team is only recording from your neck down in an attempt to study your 

mobility and gait. The study is video recorded only for data analysis purposes and all 

recorded files will be de-identified and stored in a secure location.  

  

Some study participants may experience fatigue with the laboratory walking and balance 

tasks. The walking tasks are simple walking and turning tasks that do not contain any 

obstacles or barriers. The tasks are not designed to evaluate falling. Therefore, the risk of 

falling will be equal to the risk of falling during routine walking and turning in everyday 

life. The data is collected wirelessly, so there are no intrusive wires in the walking path.  

  

Data collection and use of information  
Participation in this study is voluntary.  Information and data obtained in the study will 

not be labeled with any of your personal information (name, initials, date of birth, 

medical record number, etc.).   
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The data from the study will be kept electronically and securely using the LHSC 

computer network.  At all times, the data will be in the possession of one of the 

investigators of this study and will not be stored off-site. The recorded videos will also be 

stored in a secure location until all the analysis is complete.  

  

For the purposes of contacting you to arrange the data collection sessions and linking 

your data from the multiple visits, we will keep a master list of all participants.  This list 

will contain your first name, telephone number, address, the dates you completed your 

sessions, and a number that we will assign to you that will also appear on your data 

recordings.  At the conclusion of this study, this master list will be destroyed.   

  

Your signed consent, which will have your name on it, will not be stored with the data 

collected from the study and will not be connected to the data collected.  The master list 

with your contact information on it will also be stored separately from the data collected 

to avoid linking your personal information to your data recordings.  Consent forms and 

the master list will be stored in a secure location in the Movement Disorders Laboratory 

of Dr. Jog at University Hospital.  

  

Any use of this information for publication in scientific journals or presentation at 

professional conferences, will not contain any of your personal information that could be 

linked back to you or to your health information. You will receive a copy of this 

information letter for your records.  

 

Withdrawal from the study by the investigator  
The investigator may decide to take you off the study if he feels your continued 

participation would impair your wellbeing or if the measuring devices are causing 

discomfort. The investigator may also decide to terminate your participation if 

compliance at follow-up is deemed insufficient.  

  

Monetary compensation  
You will not be paid for participation in this study. Parking fees will however be 

compensated.    

 

Confidentiality  
In order to preserve your confidentiality, only the investigators in this study will have 

access to your research information.  No personal information will be collected or 

retained with your data. AT NO TIME, will your name be used in scientific presentations 

or publications.  The recorded data will remain secure, accessible only to research 

personnel.   

  

Representatives of the University of Western Ontario Health Sciences Research Ethics 

Board may contact you or may require access to your study related records to monitor the 

conduct of the research.  
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Voluntary participation  
Participation in this study is voluntary. You may refuse to participate, refuse to answer 

any questions or withdraw from the study at any time with no effect on your future care.  

  

You will be able to withdraw from the study at any point in time.  However, to protect the 

integrity of the study the data collected up to the point of your withdrawal will remain a 

part of the study.  You will not have the option of withdrawing your data once it has been 

collected even if you choose to withdraw from the study.  

  

Alternatives to study participation  
The alternative to study participation is to continue on your current course of medication 

and disease management under the direction of Dr. Mandar Jog.   
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Appendix C: Unified Parkinson’s Disease Rating Scale 
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Appendix D: Montreal Cognitive Assessment Scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

Appendix E: The Activities-specific Balance Confidence (ABC) 

Scale 

Instructions to Participants:   

For each of the following, please indicate your level of confidence in doing the activity 

without losing your balance or becoming unsteady from choosing one of the percentage 

points on the scale form 0% to 100%. If you do not currently do the activity in question, 

try and imagine how confident you would be if you had to do the activity. If you 

normally use a walking aid to do the activity or hold onto someone, rate your confidence 

as it you were using these supports. If you have any questions about answering any of 

these items, please ask the administrator. The Activities-specific Balance Confidence 

(ABC) Scale* For each of the following activities, please indicate your level of self-

confidence by choosing a corresponding number from the following rating scale:  

0%    10 %  20%    30%   40%   50%   60%   70%    80%    90%  100%  

no confidence          completely confident  

“How confident are you that you will not lose your balance or become unsteady when 

you…  

1. …walk around the house? ____%  

2. …walk up or down stairs? ____%  

3. …bend over and pick up a slipper from the front of a closet floor ____%  

4. …reach for a small can off a shelf at eye level? ____%  

5. …stand on your tiptoes and reach for something above your head? ____%  

6. …stand on a chair and reach for something? ____%  

7. …sweep the floor? ____%  

8. …walk outside the house to a car parked in the driveway? ____%  

9. …get into or out of a car? ____%  

10. …walk across a parking lot to the mall? ____%  

11. …walk up or down a ramp? ____%  

12. …walk in a crowded mall where people rapidly walk past you? ____%  

13. …are bumped into by people as you walk through the mall?____%  

14. …step onto or off an escalator while you are holding onto a railing? __%  

15. … step onto or off an escalator while holding onto parcels such that you 

cannot hold onto the railing? ____% 16.   …walk outside on icy sidewalks? ____%  

*Powell, LE & Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol Med Sci 1995; 

50(1): M28-34 
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Appendix F: Geriatric Depression Scale 

1. Are you basically satisfied with your life? ______  

2. Have you dropped many of your activities and interests? ______  

3. Do you feel that your life is empty? ______  

4. Do you often get bored? ______  

5. Are you hopeful about the future? ______  

6. Are you bothered by thoughts you can’t get out of your head? ______  

7. Are you in good spirits most of the time? ______  

8. Are you afraid that something bad is going to happen to you? ______  

9. Do you feel happy most of the time? ______  

10. Do you often feel helpless? ______  

11. Do you often get restless and fidgety? ______  

12. Do you prefer to stay at home, rather than going out and doing new things? _____  

13. Do you frequently worry about the future? ______  

14. Do you feel you have more problems with memory than most? ______  

15. Do you think it is wonderful to be alive now? ______  

16. Do you often feel downhearted and blue? ______  

17. Do you feel pretty worthless the way you are now? ______  

18. Do you worry a lot about the past? ______  

19. Do you find life very exciting? ______  

20. Is it hard for you to get started on new projects? ______  

21. Do you feel full of energy? ______  

22. Do you feel that your situation is hopeless? ______  

23. Do you think that most people are better off than you are? ______  

24. Do you frequently get upset over little things? ______  

25. Do you frequently feel like crying? ______  

26. Do you have trouble concentrating? ______  

27. Do you enjoy getting up in the morning? ______  

28. Do you prefer to avoid social gatherings? ______  

29. Is it easy for you to make decisions? ______  

30. Is your mind as clear as it used to be? ______  
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Appendix G: Freezing of Gait Questionnaire (FOGQ)  

1. During your worst state—Do you walk: _____  

0 Normally  

1 Almost normally—somewhat slow  

2 Slow but fully independent  

3 Need assistance or walking aid  

4 Unable to walk  

2. Are your gait difficulties affecting your daily activities and independence? _____  

0 Not at all  

1 Mildly  

2 Moderately  

3 Severely  

4 Unable to walk  

3. Do you feel that your feet get glued to the floor while walking, making a turn or 

when trying to initiate walking (freezing)? _____  

0 Never  

1 Very rarely—about once a month  

2 Rarely—about once a week  

3 Often—about once a day  

4 Always—whenever walking  

4. How long is your longest freezing episode? _____  

0 Never happened  

1 1–2 s  

2 3–10 s  

3 11–30 s  

4 Unable to walk for more than 30 s  
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5. How long is your typical start hesitation episode (freezing when initiating the 

first step)? _____          

0 None  

1 Takes longer than 1 s to start walking  

2 Takes longer than 3 s to start walking  

3 Takes longer than 10 s to start walking  

4 4 Takes longer than 30 s to start walking  

6. How long is your typical turning hesitation: (freezing when turning) _____  

0 None  

1 Resume turning in 1–2 s  

2 Resume turning in 3–10 s  

3 Resume turning in 11–30 s  

4 Unable to resume turning for more than 30 s  
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